• Ei tuloksia

6. DISCUSSION

6.4 Concluding remarks

The original aims of these studies were to characterize stem cell specific glycans and glycosyltransferases in UCB derived stem and progenitor cells and to explore the possibility to modify stem cell surface glycosylation by metabolic glycoengineering. By glycosyltransferase gene expression profiling and cell surface analysis we discovered unique features of UCB derived stem cell glycocalyxes, including two novel glycan determinants, extracellular O-GlcNAc and linear

poly-LacNAc on UCB-MSCs. We also discovered that the expression of the common stem cell marker SSEA-3 is affected by cell culture conditions. Furthermore, we characterized a novel interaction between galectin-1 and P-selectin and showed by structural glycan analysis that cell surface glycosylation can be efficiently altered by metabolic glycoengineering. In conclusion, these studies have provided novel insights into the glycobiology of UCB derived stem and progenitor cells that may help to distinguish better cell populations for distinct therapeutic applications and to design therapeutic cells with enhanced biological properties.

ACKNOWLEDGEMENTS

This study was carried out at the Finnish Red Cross Blood Service, Research and Development, Cell Surface Analytics Laboratory in Helsinki, under the supervision of Docent Leena Valmu and Docent Jarkko Räbinä, during the years 2008-2013.

I express my deepest gratitude to all those who made this work possible, especially:

I am grateful to my supervisors Leena and Jarkko for their never ending optimism, for always believing in me and in these projects, and for all the encouragement and support during these years.

I acknowledge the former and present Chief Executives of the Finnish Red Cross Blood Service Martti Syrjälä and Jukka Rautonen, and Directors of the Research and Development Unit Kari Aranko, Jaana Mättö and Jukka Partanen for providing a warm research environment for this work. Saara Laitinen, the Head of Stem Cell Laboratory, is warmly acknowledged for her positive attitude towards these projects, and I want to thank Mike Jones, the Head of Licensing and Alliance Management, for taking care of all the ‘business negotiations’.

I thank Professor Jukka Finne and Docent Susanna Miettinen for the thorough and detailed review of this thesis.

The expert members of the thesis committee Professors Risto Renkonen and Petri Lehenkari are warmly acknowledged for useful discussions and encouragement throughout this thesis project.

I thank my co-authors of the accompanying publications for productive co-operation.

I want to thank the technical staff of the R&D during these years, Teija, Lotta A., Lotta S., Gitta, Sirkka, Iris, Paula, Sisko, Riikka, and Marina for sharing your knowhow, for always finding the time to help me with my mysterious problems, and for all the good laughs and discussions in, and outside, the lab. I also thank Marja-Leena for efficient library services and Pirjo N. for all secretarial assistance.

During these years I got to work with talented and skilful scientists at the R&D labs:

Anita, Annika, Elina, Erja, Harri, Heidi, Ilja, Janne, Jarno, Johanna, Kaarina, Kaija, Karoliina, Lotta K, Milla, Minna, Noora, Pirjo W., Sari, Sofia, Suvi, Tanja K., Tanja H., Tia, Ulla, Virve, and all the others. I want to thank you for the positive atmosphere at R&D, even during the rough times, for great ideas to improve my projects, for helping hands when needed, and for good discussions in and outside the lab. Especially, I want to thank Tia for sharing the ‘never-ending circus’ of the last years of our thesis projects, and Suvi for all the on-line glycohelp and for always being there.

Finally, I want to thank my family and friends for sharing the ups and downs of life and this thesis with me and for all the encouragement during these years. Especially, I thank my parents Sirpa and Kari, and my parents-in law Marja-Leena and Heikki, for their endless support and help with the kids. I thank my beloved husband Teemu for all the love and patience during the thesis process and my three little musketeers Joona, Milja, and Saana for all the sunshine and joy you bring into my everyday life.

This work was financially supported by the Finnish Glycoscience Graduate School, the Finnish Funding Agency for Technology and Innovation (TEKES) and the EVO Medical Research Fund of Finnish Red Cross Blood Service.

Helsinki, April 2014

REFERENCES

Ali H, Al-Mulla F (2012). Defining umbilical cord blood stem cells. Stem Cell Discovery 2: 15-23.

Almaraz RT, Aich U, Khanna HS, et al (2012). Metabolic oligosaccharide

engineering with N-acyl functionalized ManNAc analogs: Cytotoxicity, metabolic flux, and glycan-display considerations. Biotechnol Bioeng 109: 992-1006.

Anderson RGW (1998). THE CAVEOLAE MEMBRANE SYSTEM. Annu Rev Biochem 67: 199-225.

Atoui R, Chiu RC (2012). Concise review: Immunomodulatory properties of mesenchymal stem cells in cellular transplantation: Update, controversies, and unknowns. Stem Cells Transl Med 1: 200-5.

Badcock G, Pigott C, Goepel J, et al (1999). The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. Cancer Res 59: 4715-9.

Bernardo ME, Locatelli F, Fibbe WE (2009). Mesenchymal stromal cells. Ann N Y Acad Sci 1176: 101-17.

Bernardo ME, Pagliara D, Locatelli F (2012). Mesenchymal stromal cell therapy: A revolution in regenerative medicine? Bone Marrow Transplant 47: 164-71.

Bonde J, Hess DA, Nolta JA (2004). Recent advances in hematopoietic stem cell biology. Curr Opin Hematol 11: 392-8.

Breton C, Fournel-Gigleux S, Palcic MM (2012). Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 22: 540-9.

Brimble SN, Sherrer ES, Uhl EW, et al (2007). The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not essential for human ESC pluripotency. Stem Cells 25:

54-62.

Brockhausen I, Schachter H, Stanley P (2009) O-GalNAc glycans. In Essentials of glycobiology (Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME eds) The Consortium of Glycobiology Editors, La Jolla, California: Cold Spring Harbor (NY), .

Brown JA, Boussiotis VA (2008). Umbilical cord blood transplantation: Basic biology and clinical challenges to immune reconstitution. Clin Immunol 127: 286-97.

Brunstein CG, McKenna DH, DeFor TE, et al (2013). Complement fragment 3a priming of umbilical cord blood progenitors: Safety profile. Biol Blood Marrow Transplant 19: 1474-9.

Bucior I, Burger MM (2004). Carbohydrate-carbohydrate interactions in cell recognition. Curr Opin Struct Biol 14: 631-7.

Campbell CT, Sampathkumar SG, Yarema KJ (2007a). Metabolic oligosaccharide engineering: Perspectives, applications, and future directions. Mol Biosyst 3: 187-94.

Campbell TB, Hangoc G, Liu Y, et al (2007b). Inhibition of CD26 in human cord blood CD34+ cells enhances their engraftment of nonobese diabetic/severe combined immunodeficiency mice. Stem Cells Dev 16: 347-54.

Caplan AI, Correa D (2011). The MSC: An injury drugstore. Cell Stem Cell 9: 11-5.

Caplan AI (2009) Chapter 29 - mesenchymal stem cells. In Essentials of stem cell biology (second edition) (Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R, Thomas ED, Thomson J, Wilmut I eds) Academic Press: San Diego, 243-248.

Carman CV, Springer TA (2008). Trans-cellular migration: Cell-cell contacts get intimate. Curr Opin Cell Biol 20: 533-40.

Chen J, Huang N, Ma B, et al (2013). Guidance of stem cells to a target destination in vivo by magnetic nanoparticles in a magnetic field. ACS Appl Mater Interfaces 5:

5976-85.

Christopherson KW,2nd, Paganessi LA, Napier S, et al (2007). CD26 inhibition on CD34+ or lineage- human umbilical cord blood donor hematopoietic stem

cells/hematopoietic progenitor cells improves long-term engraftment into NOD/SCID/Beta2null immunodeficient mice. Stem Cells Dev 16: 355-60.

Clements WK, Traver D (2013). Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol 13: 336-48.

Comelli EM, Head SR, Gilmartin T, et al (2006). A focused microarray approach to functional glycomics: Transcriptional regulation of the glycome. Glycobiology 16:

117-31.

Cummings RD (2009). The repertoire of glycan determinants in the human glycome.

Mol Biosyst 5: 1087-104.

Cummings RD, Liu FT (2009) Galectins. In Essentials of glycobiology (Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME eds) The Consortium of Glycobiology Editors, La Jolla, California: Cold Spring Harbor (NY), .

Deak E, Seifried E, Henschler R (2010). Homing pathways of mesenchymal stromal cells (MSCs) and their role in clinical applications. Int Rev Immunol 29: 514-29.

Delaney C, Ratajczak MZ, Laughlin MJ (2010). Strategies to enhance umbilical cord blood stem cell engraftment in adult patients. Expert Rev Hematol 3: 273-83.

Di Lella S, Sundblad V, Cerliani JP, et al (2011). When galectins recognize glycans:

From biochemistry to physiology and back again. Biochemistry 50: 7842-57.

Dimitroff CJ, Lee JY, Rafii S, et al (2001a). CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J Cell Biol 153: 1277-86.

Dimitroff CJ, Lee JY, Schor KS, et al (2001b). Differential L-selectin binding activities of human hematopoietic cell L-selectin ligands, HCELL and PSGL-1. J Biol Chem 276: 47623-31.

Dominici M, Le Blanc K, Mueller I, et al (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. the international society for cellular therapy position statement. Cytotherapy 8: 315-7.

Draper JS, Pigott C, Thomson JA, et al (2002). Surface antigens of human

embryonic stem cells: Changes upon differentiation in culture. J Anat 200: 249-58.

Droujinine IA, Eckert MA, Zhao W (2013). To grab the stroma by the horns: From biology to cancer therapy with mesenchymal stem cells. Oncotarget 4: 651-64.

Du J, Meledeo MA, Wang Z, et al (2009). Metabolic glycoengineering: Sialic acid and beyond. Glycobiology 19: 1382-401.

Du J, Yarema KJ (2010). Carbohydrate engineered cells for regenerative medicine.

Adv Drug Deliv Rev 62: 671-82.

Duffy MM, Ritter T, Ceredig R, et al (2011). Mesenchymal stem cell effects on T-cell effector pathways. Stem Cell Res Ther 2: 34.

Ende M, Ende N (1972). Hematopoietic transplantation by means of fetal (cord) blood. A new method. Va Med Mon (1918) 99: 276-80.

English K (2013). Mechanisms of mesenchymal stromal cell immunomodulation.

Immunol Cell Biol 91: 19-26.

Feuerhake F, Fuchsl G, Bals R, et al (1998). Expression of inducible cell adhesion molecules in the normal human lung: Immunohistochemical study of their

distribution in pulmonary blood vessels. Histochem Cell Biol 110: 387-94.

Flynn A, Barry F, O'Brien T (2007). UC blood-derived mesenchymal stromal cells:

An overview. Cytotherapy 9: 717-26.

Franquesa M, Hoogduijn MJ, Bestard O, et al (2012). Immunomodulatory effect of mesenchymal stem cells on B cells. Front Immunol 3: 212.

Frassoni F, Gualandi F, Podesta M, et al (2008). Direct intrabone transplant of unrelated cord-blood cells in acute leukaemia: A phase I/II study. Lancet Oncol 9:

831-9.

Frenette PS, Pinho S, Lucas D, et al (2013). Mesenchymal stem cell: Keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31: 285-316.

Friedenstein AJ, Petrakova KV, Kurolesova AI, et al (1968). Heterotopic of bone marrow. analysis of precursor cells for osteogenic and hematopoietic tissues.

Transplantation 6: 230-47.

Fujitani N, Furukawa J, Araki K, et al (2013). Total cellular glycomics allows characterizing cells and streamlining the discovery process for cellular biomarkers.

Proc Natl Acad Sci U S A 110: 2105-10.

Gabius HJ (2008). Glycans: Bioactive signals decoded by lectins. Biochem Soc Trans 36: 1491-6.

Gang EJ, Bosnakovski D, Figueiredo CA, et al (2007). SSEA-4 identifies mesenchymal stem cells from bone marrow. Blood 109: 1743-51.

Gao J, Dennis JE, Muzic RF, et al (2001). The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169:

12-20.

Gieseke F, Bohringer J, Bussolari R, et al (2010). Human multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood 116: 3770-9.

Glennie S, Soeiro I, Dyson PJ, et al (2005). Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105: 2821-7.

Gluckman E, Broxmeyer HA, Auerbach AD, et al (1989). Hematopoietic

reconstitution in a patient with fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med 321: 1174-8.

Gluckman E, Ruggeri A, Volt F, et al (2011). Milestones in umbilical cord blood transplantation. Br J Haematol 154: 441-7.

Guillot PV, Gotherstrom C, Chan J, et al (2007). Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 25: 646-54.

Hakomori S (2004). Carbohydrate-to-carbohydrate interaction in basic cell biology:

A brief overview. Arch Biochem Biophys 426: 173-81.

Halbrecht J (1939). TRANSFUSION WITH PLACENTAL BLOOD. The Lancet 233: 202-3.

Hamouda H, Ullah M, Berger M, et al (2013). N-glycosylation profile of

undifferentiated and adipogenically differentiated human bone marrow mesenchymal stem cells: Towards a next generation of stem cell markers. Stem Cells Dev 22:

3100-13.

Hansen SF, Bettler E, Rinnan A, et al (2010). Exploring genomes for glycosyltransferases. Mol Biosyst 6: 1773-81.

Hao L, Sun H, Wang J, et al (2012). Mesenchymal stromal cells for cell therapy:

Besides supporting hematopoiesis. Int J Hematol 95: 34-46.

Hart GW, Slawson C, Ramirez-Correa G, et al (2011). Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu Rev Biochem 80: 825-58.

Heiskanen A, Hirvonen T, Salo H, et al (2009). Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage.

Glycoconj J 26: 367-84.

Heiskanen A, Satomaa T, Tiitinen S, et al (2007). N-glycolylneuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. Stem Cells 25: 197-202.

Hemmoranta H, Hautaniemi S, Niemi J, et al (2006). Transcriptional profiling reflects shared and unique characters for CD34+ and CD133+ cells. Stem Cells Dev 15: 839-51.

Hemmoranta H, Satomaa T, Blomqvist M, et al (2007). N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells. Exp Hematol 35: 1279-92.

Henschler R, Deak E, Seifried E (2008). Homing of mesenchymal stem cells.

Transfus Med Hemother 35: 306-12.

Hirabayashi J, Hashidate T, Arata Y, et al (2002). Oligosaccharide specificity of galectins: A search by frontal affinity chromatography. Biochim Biophys Acta 1572:

232-54.

Hoogduijn MJ, Betjes MG, Baan CC (2013). Mesenchymal stromal cells for organ transplantation: Different sources and unique characteristics? Curr Opin Organ Transplant.

Horwitz EM, Dominici M (2008). How do mesenchymal stromal cells exert their therapeutic benefit? Cytotherapy 10: 771-4.

Horwitz EM, Le Blanc K, Dominici M, et al (2005). Clarification of the nomenclature for MSC: The international society for cellular therapy position statement. Cytotherapy 7: 393-5.

International Stem Cell Initiative, Adewumi O, Aflatoonian B, et al (2007).

Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat Biotechnol 25: 803-16.

Kanehisa M, Goto S, Sato Y, et al (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: D109-14.

Kang SK, Shin IS, Ko MS, et al (2012). Journey of mesenchymal stem cells for homing: Strategies to enhance efficacy and safety of stem cell therapy. Stem Cells Int 2012: 342968.

Kannagi R, Cochran NA, Ishigami F, et al (1983). Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2: 2355-61.

Keating A (2012). Mesenchymal stromal cells: New directions. Cell Stem Cell 10:

709-16.

Kern S, Eichler H, Stoeve J, et al (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:

1294-301.

Keung EZ, Nelson PJ, Conrad C (2013). Concise review: Genetically engineered stem cell therapy targeting angiogenesis and tumor stroma in gastrointestinal malignancy. Stem Cells 31: 227-35.

Kilpinen S, Autio R, Ojala K, et al (2008). Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biol 9: R139.

Koestenbauer S, Zisch A, Dohr G, et al (2009). Protocols for hematopoietic stem cell expansion from umbilical cord blood. Cell Transplant 18: 1059-68.

Krampera M (2011). Mesenchymal stromal cell 'licensing': A multistep process.

Leukemia 25: 1408-14.

Kurtzberg J, Laughlin M, Graham ML, et al (1996). Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 335: 157-66.

Lanctot PM, Gage FH, Varki AP (2007). The glycans of stem cells. Curr Opin Chem Biol 11: 373-80.

Lasky LA (1992). Selectins: Interpreters of cell-specific carbohydrate information during inflammation. Science 258: 964-9.

Le Blanc K, Tammik C, Rosendahl K, et al (2003). HLA expression and

immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31: 890-6.

Lee T (2012). Stem cell therapy independent of stemness. World Journal of Stem Cells 4: 120-4.

Lee SH, Lee MW, Yoo KH, et al (2013). Co-transplantation of third-party umbilical cord blood-derived MSCs promotes engraftment in children undergoing unrelated umbilical cord blood transplantation. Bone Marrow Transplant 48: 1040-5.

Lei J, Wang Z, Hui D, et al (2011). Ligation of TLR2 and TLR4 on murine bone marrow-derived mesenchymal stem cells triggers differential effects on their immunosuppressive activity. Cell Immunol 271: 147-56.

Lepelletier Y, Lecourt S, Renand A, et al (2010). Galectin-1 and semaphorin-3A are two soluble factors conferring T-cell immunosuppression to bone marrow

mesenchymal stem cell. Stem Cells Dev 19: 1075-9.

Leppanen A, White SP, Helin J, et al (2000). Binding of glycosulfopeptides to P-selectin requires stereospecific contributions of individual tyrosine sulfate and sugar residues. J Biol Chem 275: 39569-78.

Li YP, Paczesny S, Lauret E, et al (2008). Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the notch pathway. J Immunol 180: 1598-608.

Liang G, Zhang Y (2013). Genetic and epigenetic variations in iPSCs: Potential causes and implications for application. Cell Stem Cell 13: 149-59.

Liang YJ, Kuo HH, Lin CH, et al (2010). Switching of the core structures of

glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc Natl Acad Sci U S A 107: 22564-9.

Lingwood CA (2011). Glycosphingolipid functions. Cold Spring Harb Perspect Biol 3: 10.1101/cshperspect.a004788.

Liu GY, Xu Y, Li Y, et al (2013). Secreted galectin-3 as a possible biomarker for the immunomodulatory potential of human umbilical cord mesenchymal stromal cells.

Cytotherapy 15: 1208-17.

Lu LL, Liu YJ, Yang SG, et al (2006). Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica 91: 1017-26.

Majeti R, Park CY, Weissman IL (2007). Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1: 635-45.

Malgieri A, Kantzari E, Patrizi MP, et al (2010). Bone marrow and umbilical cord blood human mesenchymal stem cells: State of the art. Int J Clin Exp Med 3: 248-69.

Martin MJ, Muotri A, Gage F, et al (2005). Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11: 228-32.

Martinez C, Hofmann TJ, Marino R, et al (2007). Human bone marrow

mesenchymal stromal cells express the neural ganglioside GD2: A novel surface marker for the identification of MSCs. Blood 109: 4245-8.

Matsuura A, Ito M, Sakaidani Y, et al (2008). O-linked N-acetylglucosamine is present on the extracellular domain of notch receptors. J Biol Chem 283: 35486-95.

Melief SM, Geutskens SB, Fibbe WE, et al (2013). Multipotent stromal cells skew monocytes towards an anti-inflammatory function: The link with key

immunoregulatory molecules. Haematologica 98: e121-2.

Merzaban JS, Burdick MM, Gadhoum SZ, et al (2011). Analysis of glycoprotein E-selectin ligands on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells. Blood 118: 1774-83.

Moore KL, Stults NL, Diaz S, et al (1992). Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol 118: 445-56.

Moremen KW, Tiemeyer M, Nairn AV (2012). Vertebrate protein glycosylation:

Diversity, synthesis and function. Nat Rev Mol Cell Biol 13: 448-62.

Nairn AV, York WS, Harris K, et al (2008). Regulation of glycan structures in animal tissues: Transcript profiling of glycan-related genes. J Biol Chem 283:

17298-313.

Najar M, Raicevic G, Id Boufker H, et al (2010). Modulated expression of adhesion molecules and galectin-1: Role during mesenchymal stromal cell immunoregulatory functions. Exp Hematol 38: 922-32.

Natunen S, Satomaa T, Pitkanen V, et al (2010). The binding specificity of the marker antibodies tra-1-60 and tra-1-81 reveals a novel pluripotency associated type 1 lactosamine epitope. Glycobiology.

Nauta AJ, Fibbe WE (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood 110: 3499-506.

Norgard KE, Moore KL, Diaz S, et al (1993). Characterization of a specific ligand for P-selectin on myeloid cells. A minor glycoprotein with sialylated O-linked oligosaccharides. J Biol Chem 268: 12764-74.

Notta F, Doulatov S, Laurenti E, et al (2011). Isolation of single human

hematopoietic stem cells capable of long-term multilineage engraftment. Science 333: 218-21.

Nystedt J, Anderson H, Tikkanen J, et al (2013). Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells. Stem Cells 31: 317-26.

Orkin SH, Zon LI (2008). Hematopoiesis: An evolving paradigm for stem cell biology. Cell 132: 631-44.

Passweg JR, Baldomero H, Bregni M, et al (2013). Hematopoietic SCT in europe:

Data and trends in 2011. Bone Marrow Transplant 48: 1161-7.

Pelosi E, Castelli G, Testa U (2012). Human umbilical cord is a unique and safe source of various types of stem cells suitable for treatment of hematological diseases and for regenerative medicine. Blood Cells Mol Dis 49: 20-8.

Phinney DG (2007). Biochemical heterogeneity of mesenchymal stem cell populations: Clues to their therapeutic efficacy. Cell Cycle 6: 2884-9.

Pierce M, Arango J (1986). Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetraantennary glycopeptides containing [GlcNAc-beta (1,6)man-alpha (1,6)man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 261: 10772-7.

Prescher JA, Bertozzi CR (2005). Chemistry in living systems. Nat Chem Biol 1: 13-21.

Qian H, Le Blanc K, Sigvardsson M (2012). Primary mesenchymal stem and progenitor cells from bone marrow lack expression of CD44 protein. J Biol Chem 287: 25795-807.

Rabinovich GA, Toscano MA (2009). Turning 'sweet' on immunity: Galectin-glycan interactions in immune tolerance and inflammation. Nat Rev Immunol 9: 338-52.

Reagan MR, Kaplan DL (2011). Concise review: Mesenchymal stem cell tumor-homing: Detection methods in disease model systems. Stem Cells 29: 920-7.

Ren G, Zhao X, Zhang L, et al (2010). Inflammatory cytokine-induced intercellular

Ren G, Zhao X, Zhang L, et al (2010). Inflammatory cytokine-induced intercellular