• Ei tuloksia

Comparison of stabilization scenarios and SRES-based scenarios

Stabilization Scenarios

8. I Some features of stabilization scenarios

8.2 Comparison of stabilization scenarios and SRES-based scenarios

Global mean temperature changes computed by MAGICC have been reported in Schimel et al. (1997) for the 450 and 650 ppmv cases across the same range of climate sensitivies as expressed in the SRES-based B1-low and A2-high scenarios (see Table 7). The 650 ppmv case with a 1.5°C climate sensitivity produces slight-ly less warming by 2100 than the B1-low scenario; for higher sensitivities, the 650 ppmv scenarios fall within the range of temperature changes estimated for the SRES-based scenarios. In contrast, the temperature response to 450 ppmv stabili-zation only achieves a warming as high as the SRES-based range with a 4.5°C climate sensitivity.

Researchers at the Hadley Centre have conducted 550 and 750 ppmv (CO,-equivalent) stabilization runs with the HadCM2 AOGCM (see Web site at: http: / /www.cru.uea.ac.uk:80/link/res_scens/HadCM2_time.html). The global mean annual temperature reaches equilibrium by about 2150 under the 550 ppmv run, with warming by 2100 of about 1.7°C relative to 1961-1990, placing this within the SRES-based range (Table 7). Visual inspection of mean annual temperature changes relative to 1961-1990 on global maps for both simulations by the 2080s places regional temperature changes within the range of SRES-based estimates displayed in Table 7. Similar results have also been reported for a 550 ppmv sta-bilization run with the Climate System Model of the National Center of Atmos-pheric Research, USA (see Web site at: http: / / www cgd.ucar.edu / -tls / GSM/

tables.html#tb12)

More GCM stabilization runs for a wider range of scenarios will be con-ducted during the next few years, but these initial investigations suggest that only the strictest emissions reductions, resulting in CO2-equivalent stabilization below about 500 ppmv by the end of the 21st century, will result in global warm-ing by 2100 that is lower than under the B1-low scenario.

The Finnish Environment 433

References

Boer, G.J., G. Flato, and D. Ramsden, 2000: A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate to the twenty-first century Climate Dynamics, 16, 427-450.

Emori, S., T. Nozawa, A. Abe-Ouchi, A. Numaguti, M. Kimoto, and T. Nakajima, 1999:

Coupled ocean- atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering. J. Met. Soc. Jap., 77, 1299-1307.

Hirst, A.C., S.P. O'Farrell, and H.B. Gordon, 2000: Comparison of a coupled ocean-atmos-phere model with and without oceanic eddy-induced advection. Part I: Ocean spinup and control integrations. J. Climate, 13, 139-163.

Hulme, M., 1994: Validation of large-scale precipitation fields in General Circulation Models.

In: Global Precipitations and Climate Change [Desbois, M. and F. Desalmand (eds.)].

Springer-Verlag, Berlin, pp. 387-405.

Hulme, M., T.J.Osborn, J. Jones, K.R. Briffa and P.D. Jones, 1999: Climate observations and GCM validation Final report to the UK DETR, May, Climatic Research Unit, Norwich, 65 pp.

IPCC, 1996: Climate Change 1995. The Science of Climate Change. Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change. [Houghton, J.T., L.G.M. Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)]. Cambridge University Press, Cambridge, 572 pp.

Jones, P.D., 1995: Recent variations in mean temperature and the diurnal temperature range in the Antarctic. Geophysical Research Letters, 22, 1345-1348.

Jones, P.D., K.R. Briffa, T.P. Barnett, and S.F.B. Tett, 1998: High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with GCM control-run temperatures. The Holocene, 8, 455-471.

Karl, T.R., 1998: Regional trends and variations of temperature and precipitation. In: The Regional Impacts of Climate Change: An Assessment of Vulnerability. A Special Report of IPCC Working Group II. [Watson, R.T., M.C. Zinyowera, and R.H. Moss (eds.)].

Cambridge University Press, Cambridge, pp. 411-425.

Manabe, S. and R.J. Stouffer, 1996: Low frequency variability of surface air temperature in a 1,000-Year integration of a coupled atmosphere-ocean-land surface model. Journal of Climate, 9, 376-393.

Meehl,G.A. and W.M. Washington, 1995: Cloud albedo feedback and the super greenhouse effect in a global coupled GCM. Climate Dynamics, 11, 399-411.

Mitchell, J.F.B. and T.C. Johns, 1997: On the modification of global warming by sulphate aerosols J.Climate, 10, 245-267.

Mitchell, J.F.B., S. Manabe, V. Meleshko, and T. Tokioka, 1990: Equilibrium climate change - and its implications for the future. In: Climate Change: the IPCC Scientific Assessment [Houghton, J.T., G.J. Jenkins, and J.J. Ephraums (eds.)]. Cambridge University Press, Cambridge, pp. 137-164.

Mitchell, J.F.B., T.C. Johns, M. Eagles, W.J. Ingram, and R.A. Davis, 1999: Towards the construction of climate change scenarios. Climatic Change, 41, 547-581.

Nakicenovic, N., J. Alcamo, G. Davis, B. de Vries, J. Fenhann, S. Gaffin, K. Gregory, A.

Griibler, T.Y. Jung, T. Kram, E.L. La Rovere, L. Michaelis, S. Mori, T. Morita, W.

Pepper, H. Pitcher, L. Price, K. Raihi, A. Roehrl, H.-H. Rogner, A. Sankovski, M.

Schlesinger, E Shukla, S. Smith, R. Swart, S. van Rooijen, N. Victor, and Z. Dadi, 2000: Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 599 pp.

New, M., M. Hulme, and P.D. Jones, 1999: Representing twentieth-century space-time clima-te variability. Part 1: development of a 1961-90 mean monthly clima-terrestrial climatology.

J.Climate, 12, 829-856.

m

The Finnish Environment 433

New, M. G., M. Hulme and P. D. Jones, 2000: Representing twentieth-century space-time climate variability. Part II: development of 1901-1996 monthly grids of terrestrial surface climate. J. Climate, 13, 2217-2238.

Oppenheimer, M., 1998: Global warming and the stability of the West Antarctic Ice Sheet.

Nature, 393, 325-332.

Ralmistorf, S, and A. Ganopolski, 1999: Simple theoretical model may explain apparent climate instability. J. Climate, 12, 1349-1352.

Roeckner,E., K. Arpe, L. Bengtsson, M. Christoph, M. Claussen, L. Diimenil, M. Esch, M.

Giorgetta, U. Schlese, and U. Schulzweida, 1996: The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck Institute for Meteorology, Report No.218, Hamburg, Germany, 90pp.

Saltzman, B. and R.J. Oglesby, 1992: Equilibrium climate statistics of a general circulation model as function of atmospheric carbon dioxide. Part I: Geographic distributions of primary variables. J. Climate, 5, 66-92.

Santer, B.D., T.M.L. Wigley, T.P. Barnett, and E. Anyamba, 1996: Detection of climate change and attribution of causes. In: Climate Change 1995. The Science of Climate Change. Con-tribution of Working Group Ito the Second Assessment Report of the Intergovernmental Panel on Climate Change. [Houghton, J.T., L.G.M. Filho, B.A. Callander, N. Harris, A. Kattenberg, and K. Maskell (eds.)]. Cambridge University Press, Cambridge, pp. 407-443.

Schimel, D., M. Grubb, F. Joos, R. Kaufmann, R. Moss, W. Ogana, R. Richels, T. Wigley, R.

Cannon, J. Edmonds, E. Haites, D. Harvey, A. Jain, R. Leemans, K. Miller, R. Parkin, E. Sulzman, R. Tol, J. de Wolde and M. Bruno, 1997: Stabilization of atmospheric green-house gases: physical, biological and socio-economic implications. Intergovernmental Panel on Climate Change, IPCC Technical Paper III,Geneva, 50 pp.

Schlesinger, M.E., S. Malyshev, E.V. Rozanov, F. Yang, N.G. Andronova, B. de Vries, A.

Griibler, K. Jiang, T. Masui, T. Morita, J. Penner, W. Pepper, A. Sankovski and Y.

Zhang, 2000: Geographical distributions of temperature change for scenarios of greenhouse gas and sulfur dioxide emissions. Technological Forecasting and Social Change (in press).

Tett, S.F.B., T.C. Johns, and J.F.B. Mitchell, 1997: Global and regional variability in a coupled AOGCM. Climate Dynamics, 13, 303-323.

Walsh, K., R. Allan, R. Jones, B. Pittock, R. Suppiah, and P. Whetton, 1999: Climate Change in Queensland under Enhanced Greenhouse Conditions. First Annual Report, 1997-1998.

CSIRO Atmospheric Research, Aspendale, Australia, 84 pp.

Washington, W.M. and G.A. Meehl, 1996: High-latitude climate change in a global coupled ocean-atmosphere-sea ice model with increased atmospheric CO2. Journal of

Geo-physical Research, 101, 12795-12801.

Wigley, T.M.L. and S.C.B. Raper, 1995: An heuristic model for sea-level rise due to the melting of small glaciers. Geophys. Res. Letts., 22, 2749-2752.

Wigley, T.M.L., 1995: Global-mean temperature and sea level consequences of greenhouse gas concentration stabilization. Geophys. Res. Letts., 22, 45-48.

Wigley,T.M.L., S.C.B. Raper, M. Salmon, and M. Hulme, 1997: MAGICC: Model for the Assess-ment of Greenhouse-gas Induced Climate Change: Version 2.3, Climatic Research Unit, Norwich, UK

Zhang, X-H., J.M. Oberhuber, A. Bacher, and E. Roeckner, 1998: Interpretation of interbasin exchange in an isopycnal ocean. Climate Dynamics, 14, 725-740.

The Finnish Environment 433

0

The Finnish Environment 433

Appendix A: Global Maps Of Annual And Seasonal Temperature And Precipitation Change Under The Four SRES-Based Scenarios

Appendix A/I

Figures Al-A10. The BI-low characterization of temperature and precipitation change rela- tive to 1961-1990. Each figure shows maps for the 2020s (top), 2050s (middle) and 2080s (bottom). The left hand panel shows median changes from 10 GCM simulations. The right hand panel shows the range of GCM results. Temperature changes (°C) are shown in Fig- ures Al -A5; precipitation changes (percent) in Figures A6-A10. Consecutive figures show annual and seasonal (December-February, March-May, June-August and September-Novem- ber) mean changes.

B1-low, Annual Temperature

Median Range

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 80N

60N 40N 20N

40N 20N EQ 20S 40S 60S 800

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

80N 60N

180 150W 120W 90W 60W 30W U1

EQ

O N 20S

40S 60S 80S

80N 60N 40N

0) 20N EQ

O

N 205 40S 60S 80S

80N 60N 40N

1n 20N CO E Q

O N 20S

40S 60S 80S

0 30E 60E 90E 120E 150E

°C change ( 1 1 1 1 1 0.5 1 1.5 2 3 4

180180 150W 120W 90W 60W 30W

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

5 6

0 30E 60E 90E 120E 150E

The Finnish Environment 433

Median Range

100 150W 120W 90W 80N

60N 40N O) 20N tV EQ CV 20S

40S 60S 80S

80N 60N 40N N 20N 1,0 EQ 0 CV 20S

40S 60S 80S

60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180 80N 60N 40N 20N EQ 205 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

180 90E 120E 150E 0 30E 60E

2 3 4 5 6

O N co O N

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

80N 60N 40N 20N EQ 20S 40S 60S 80S 150W 120W 90W 60W 30W 0 30E 60E

0.5

90E 120E

1 1.5

150W 120W 90W 60W 30W 150E 180180

°C change Appendix A/2

191-low, DJIF Temperetuvo

0

The Finnish Environment 433

60E 90E 120E 150E 180180 150W 120W 90W 60W 60W

150W 120W 90W 60E 90E 120E 150E 180

180180 150W 120W 90W 60W 30W 60W 30W 0 30E 60E 90E 120E 150E

°C change 1 1 1 1 1 1

60E 90E 120E 150E 0 30E

0.5 1 1.5 2 3 4 5 6

180 BON 60N 40N

N 20N

O EQ

0 N 20S

40S 60S 80S

Median

30W 0 30E

Range

30W 0 30E

60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N

co) 20N

N EQ O N 20S

40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

180 150W 120W B0W

80N 60N 40N 20N EQ 200 40S 60S 80S

BON 60N 40N 20N EQ 20S 40S 60S 80S 180

Appendix A/3

B1-low, MAM Temperature

The Finnish Environment 433

m

180 80N 60N 40N

N 20N

N EQ

0 N 20S

40S 60S 80S

80N 60N 40N

co 20N

Lo EQ O N 20S 40S 60S 80S

150W 120W 90W 150W 120W 90W

Median

60W 30W 0 30E 60E 90E 120E 150E 180180

Range

60W 30W 0 30E 60E 90E 120E 150E 180 80N 60N 40N 20N EQ 20S 405 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

°C change

0.5 1 1.5 2 3

80N 60N 40N 20N EQ 20S 40S 60S 80S

180 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

4 5 6

Appendix A/4

B1-low, JJA Temperature

0

The Finnish Environment 433

80N 60N 40N N 20N

EQ

O N 20S

40S 60S 80S

80N 60N 40N

0) 20N

EQ

O

N 20S

40S 60S 80S

BON 60N 40N

V7 20N CO EQ

O

N 20S

40S 6os 80S

Median Range

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180 80N 60N

0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

°C change I ! I I I I

0.5 1 1.5 2 3 4 5 6

80N 60N 40N 20N EQ 20S 405 600 80S 180

40N 20N' EQ 20S 40S 60S 80S

BON 60N 40N 20N EQ 20S 40S 60S 80S

180 150W 120W 90W 60W 30W

Appendix A/S

B1-low, SON Temperature

The Finnish Environment 433

m

80N 80N Range

0 Median

180180 150W 120W 90W 60W 30W 30E

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 60E 90E 120E 150E 180

180 150W 120W 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180

75 100 60N

40N 87 20N

O Eq N O N 20S

40S 60S 80S

80N 60N 40N

tn 20N

EQ

O N 20S

40S 60S 80S

80N

40N

N 20N E

CO Q

O N 20S

40S 60S 80S

60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S 90W 60W 30W 0 30E 60E 90E 120E 150E

Median of % changes

-50 -30 -20 -10 0 10 20 30 50

Range of % changes

I 1 1 1 1(MIMI

10 20 30 40 50

Appendix A/6

Al-low, Annual Precipitation

m

The Finnish Environment 433

0 30E 180180 150W 120W 90W 60W 30W

Range of % changes I I

40 50 0

3 20 10

-50 -30 -20 -10 0 75

60E 90E 120E 150E

100 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Median of % changes

I I IIII

10 20 30 50

Appendix A/1

B1-low, DJF Precipitation

B0N 60N 40N

N 20N

EQ

O

N 20S

40S 60S 80S

BON 60N 40N dl 20N O EQ

N

0

N 20S

40S 60S 80S 80N 60N 40N

co 20N

00 EQ O

N 20S

40S 60S 80S

180 BON 60N 40N 20N' EQ 20S 40S 60S 80S

BON 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

Median Range

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

The Finnish Environment 433

m

40N 20N EQ 20S 40S 60S 80S 40N

20N EO 20S 40S 60S 80S 180 80N 60N

150W 120W 90W 60W 120E 150E 180180 150W 120W 90W 180

80N 60N

Median

30W 0 30E 60E 90E

Range

60W 30W 0 30E 60E 90E 120E 150E

80N 60N 40N N 20N

O EO Ö N 20S

40S 60S 80S

80N 60N 40N co 20N 00 EQ

O

N 20S 40S 60S 80S

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180

Median of % changes

I I I I I I RIM_=

-50 -30 -20 -10 0 10 20 30 50

80N 60N 40N 20N E0 20S 40S 60S 80S

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Range of % changes

I I I I I

10 20 30 40 50 75 100

80N 60N 40N 20N EQ 20S 40S 60S e0S 180

Appendix A/8

B1-low, MAM Precipitation

m

The Finnish Environment 433

Median Range

60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180 150W 120W 90W

30

-50 -30 -20 -10 0 10 20 30 50 10 20

131-low, JJA Precipitation

Appendix A/9

80N 60N 40N 20N 0'l

EQ O N 20S 40S 60S 80S

BON 60N 40N f!! 20N

O EQ Ö

N 20S

40S 60S 805

150W 120W 90W 60W 30W 40S

60S 80S

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180

Median of % changes

40 80N

60N 40N N 20N

CO EQ

N O 20S

I I I I I I I PM

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

1 1

0 30E 60E

50 75

90E 120E 150E

100

Range of % changes

180 80N 60N

The Finnish Environment 433

IOW

40N 2014' EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S 11111141111

N.

40N 20N EQ 20S 40S 60S 80S 40N

20N EQ 20S 40S 60S 80S 180 80N 60N

150W 120W 90W 120E 150E 180180 150W 120W 90W 120E 150E 180

80N 60N

Median

60W 30W 30E 60E 90E

Range

60W 30W 0 30E 60E 90E

80N 60N 40N 20N 1n L'n EQ

N O 20S 40S 60S 80s

80N 60N 40N 20N EQ 20S 40S 60S 805

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Median of % changes

-50 -30 -20 -10 0 10 20 30 50

80N 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S 180 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Range of % changes

10 20 30 40 50 75 100

Appendix A/10

B1-low, SON Precipitation

m

The Finnish Environment 433

Appendix A/I I Figures Al I -A20. The 82-mid characterization of temperature and precipitation change

relative to 1961-1990. Each figure shows maps for the 2020s (top), 2050s (middle) and 2080s (bottom). The left hand panel shows median changes from 10 GCM simulations.

The right hand panel shows the range of GCM results. Temperature changes (°C) are shown in Figures Al 1-A15; precipitation changes (percent) in Figures A16-A20. Consecu-tive figures show annual and seasonal (December-February, March-May, June-August and September- November) mean changes.

B2-mid, Annual Temperature

180 80N 60N 80N

60N 40N 0) 20N

EQ O N 20S

40S 60S 80S

Median Range

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

40N 20N EQ 20S 40S 60S 80S

0 30E 60E 90E 120E 150E 80N 60N 40N 20N EQ 20S 40S 60S 80S 180

80N 60N 40N 20N EQ 20S 40S 60S 80S

30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W

°C change

I I I I I I I

0.5 1 1.5 2 3 4 5

80N 60N 40N 0) 20N

EQ O fV 20S 40S 60S 80S

80N 60N 40N 07 20N CO EQ O N 20S

40S 60S 80S

180 150W 120W 90W 60W 30W 0

6

The Finnish Environment 433

m

Median Range

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180 80N 60N 40N 20N EQ 205 40S 60S 80S

co

N EQ

O N 20S

80N 60N 40N 20N

40S 60S 800

30W 0 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W

°C change

30E 60E 90E 120E 150E

0.5 1 1.5 2 3 4 5 6

80N 60N 40N 20N 0'1 O LO EQ E O N 20S

40S 60S 80S

80N =~=t

60N 40N 20N tll O E CO Q

0 N 205

40S 60S 806

80N 60N 40N 20N EQ 20S 40S 60S 806 180

80N 60N 40N 20N EQ 20S 40S 60S 80S

Appendix A/I2

B2-mid, DJF Temperature

The Finnish Environment 433

Appendix A/13

B2-mid, MAM Temperature

180 150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180100 150W 120W 90W 60W 30W

°C change

1 1 1 1 1 1 1

0 30E 60E 90E 120E 150E 180

0.5 1 1.5 2 3 4 5 6

The Finnish Environment 433

180 80N 60N 40N

1A 20N

N O EQ O N 20S

40S 60S 80S

80N 60N 40N

01 20N EQ

O N 20S

40S 60S 80S

BON 60N 40N

N 20N

co E Ea

O N 20S

40S 60S 80S

Median Range

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180 80N 60N 40N 20N EQ 20S 405 60S 80S

80N 60N 40N 20N EQ 20S 405 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

180 80N 60N 40N

N 20N

O EQ

O N 20S

40S 60S 80S 80N 60N 40N 20N 07

ln EQ

O N 200

40S 60S 80S

Median Range

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180 80N 60N 40N 2bN EQ 200 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 605 805

150W 120W 90W 60W 30W 90E 120E

1 1.5

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

O N co O N

80N 60N 40N 20N EQ 20S 40S 60S 80S

180 150E 180180

80N 60N 40N 20N EQ 20S 40S 60S 805 180 30E 60E

0.5

°C change

2 3 4 5 6

Appendix A/14

B2-mid, JJA Temperature

0

The Finnish Environment 433

Appendix A/15

B2-mid, SON Temperature

Median Range

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W O 30E 60E 90E 120E 150E 180 80N

60N 40N

co 20N N Q E

O

N 20S

40S 60S 80s

80N 60N 40N 20N EQ 20S 40S 60S 805

180 150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W

°C change

I I I I I

O 30E 60E 90E 120E 150E 180

0.5 1 1.5 2 3 4 5 6

The Finnish Environment 433

80N 60N 40N

co 20N

In EQ

O N 20S

40S 60S 80S B0N 60N 40N

N 20N

O EQ

CO 0

N 20S

40S 60S 80s

~

.,. -01110' 1111141111M t

BON 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

180 B0N 60N 40N 20N EQ 20S 40S 60S 80S

Range

0 30E

60W 30W 60E 90E 120E 150E 180 150W 120W 90W

Median

30W 0 30E

60W 60E 90E 180180

150W 120W 90W 120E 150E

60E 90E 120E 150E 0 30E

150W 120W 90W 60W 30W 30E

60W 180180

150W 120W 90W 30W 0 60E 90E 120E 150E

Median of % changes Range of % changes

BON B0N 40N 20N CO LO EQ

N 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

80N 60N 40N 20N EQ 20S 40S SOS 80S 180

-50 -30 -20 -10 0 10 20 30 50 10 20 30 40 50 75 100

80N 60N 40N 20N EQ 20S 40S 60S OOS

BON 60N 40N 20N EQ 20S 40S SOS 80S

Appendix A/16

B2-maid, Annual Il Precipitation

The Finnish Environment 433

Median Range 0

60E 150W 120W 90W 60W 30W

0 30E 90E

60W 30W 120E 150E 180180

180 150W 120W 90W 30E 80E 90E 120E 150E

180 150W 120W 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

10 20 30 40 50 75 100 80N

60N 40N V) 20N N EQ N 20S

40S 60S 80S

80N 60N 40N 07 20N

EQ O N 20S

40S 60S 80S

80N 60N ION Vl 20N CO EQ N O 20S

180 80N 60N

BON 60N 40N 20N EQ 20S 40S 60S 80S 180 40S

60S 80S

40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

..----,z

y rt ~.

trig' »'

90W 60W 30W 0 30E 60E 90E 120E 150E

Median of % changes

1 1 1 1 1 Ell M

-50 -30 -20 -10 0 10 20 30 50

Range of % changes

I 1 1 1 1 1=1

Appendix A/I7

B2-mid, DJF Precipitation

The Finnish Environment 433

180 80N 60N

Range

60W 30W 0 180

BON 60N 150W 120W 90W

Median

60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 30E 60E 90E 120E 150E

— 1= 1,`

. C_J_'~~-•~C~

40N 20N EQ 20S 40S 60S 80S

40N 20N EQ 20S 40S 60S 80S

BON 60N 40N

N 20N V7 EQ

0 N 20S

40S 60S 80S

BON 60N 40N 20N EQ 20S 40S 60S 80S

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Median of % changes

I I I

-50 -30 -20 -10 0 10 20 30 50

0 30E 60E 90E 120E 150E

Range of % changes

10 20 30 40 50 75 100

BON 60N 40N 20N EQ 20S 40S 605 80S

180180 150W 120W 90W 60W 30W

BON 60N 40N 20N EQ 20S 40S 60S 80S 180

Appendix A/18

B2-mid, MAM Precipitation

0

The Finnish Environment 433

MI I I I

90E 120E 150E 180180 150W 120W 90W 60W

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W

Range of % changes Median of % changes

10 20 30 40 50 75 100 10 20 30 50

-50 -30 -20 -10 0

Appendix A/19

B2-mid, JJA Precipitation

180 150W 120W 90W 60W 30W

Median

0 30E 80N

60N 40N 20N EQ 20S 40S 60S 80S

60E

Range

30W 0 30E 60E 90E 120E 150E 180 80N 60N 40N 20N EQ 20S 40S 60S 80S

The Finnish Environment 433

80N 60N 40N (!! 20N

EQ

O

N 20S

40S 60S 80s 80N 60N 40N 1n 20N co E EQ O N 20S

40S 60S 80S

v.

~Z.

1111

`•=.•-. ~)

IMP

- •►. - 0 30E 60E 90E 120E 150E

80N 60N 40N 20N EQ 20S 40S 60S 80S 80N 60N 40N 20N EQ 20S 40S 60S 80S 180

I I

60E 90E 120E 150E 60E 90E 120E 150E 180180

40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S 80

60N 40N 20N

60S 80S 180 80N 60N 40N

Ul 20N EQ 0 N 20S

40S 60S 80S

150W 120W 90W 60W

Median

30W 0 30E 150W 120W 90W 60W

Range

30W 0 30E 180

80N 60N

.011.11 .•_

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180

Median of % changes

I I I 011.1 EMMA

-50 -30 -20 -10 0 10 20 30 50 10

0 30E 60E 90E 120E 150E

Range of % changes

20 30 40 50 75 100

O fN 0 co N

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

80N 60N 40N 20N EQ 20S 40S 60S 80S 180 150W 120W 90W 60W 30W

Appendix A/20

B2-mid, SON Precipitation

0

The Finnish Environment 433

Median Range

60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180 150W 120W 90W

150W 120W 90W 60W 30W 150E 180180

°C change

80N 60N 40N V7 20N

0 EQ

0 N 20S

40S 60S 80S

80N 60N 40N 0) 20N

O EQ

O N 20S

40S 60S 80S

1S0 80N•

60N

0 30E 60E 90E 120E 180 150W 120W 90W 60W 30W

_ ~r

80N 60N 40N 20N EQ 20S 40S 60S 80S 180 80N

60N 40N tl1 20N CO EQ 0 0 N 20S

40S 60S 80S

0 30E 60E 90E 120E 150E 40N 20N EQ 20S 40S 60S 800

80N 60N 40N 20N EQ 20S 40S 60S 80S

Figures A21-A30. The Al-mid characterization of temperature and precipitation change relative to 1961-1990. Each figure shows maps for the 2020s (top), 2050s (middle) and 2080s (bottom). The left hand panel shows median changes from 10 GCM simulations.

The right hand panel shows the range of GCM results. Temperature changes CC) are shown in Figures A21-A25; precipitation changes (percent) in Figures A26-A30. Consecu-tive figures show annual and seasonal (December-February, March-May, June-August and September-November) mean changes.

Appendix A/21

Al-mid, Annual Temperature

0.5 1.5 2 3 4 5 6

The Finnish Environment 433

m

180 80N 60N 40N 20N N O E

N Q

N 20S 40S 60S 80S

Median Range

150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 100 80N 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N tn

Lc) EQ

O N 20S

40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

180 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0

°C change

I I

80N 60N 40N 20N EQ 20S 40S 60S 80S

150W 120W 90W 60W 30W 30E 60E 90E 120E 150E

80N 60N 40N 20N EQ 20S 40S 60S 805 180

0.5 1 1.5 2 3 4 5 6

Appendix A/22

Al-mid, DJF Temperature

0

The Finnish Environment 433

Appendix A/B

Al-mid, MAM Temperature

Median Range

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W O 30E 60E 90E 120E 150E 180

The Finnish Environment 433

0

80N 60N 40N N 20N

EQ

N 20S 40S 60S 80S

80N 60N 40N

0) 20N

O EQ

O N 20S

40S 60S 80S

80N 60N 40N 20N M CO EQ

O N 20S

40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E

0.5 1 1.5

150E 180180 150W

°C change

120W 90W 60W 30W O 30E 60E 90E 120E 150E 180

I 1 I

2 3 4 5 6

Median Range

60W 30W 60E

150W 120W 90W

30E 60E 120E 150E 30E 90E 120E 150E 180

30W 0 90E 180180

180180 150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180 0

150W 120W 90W 60W 30W

3 30E 60E 90E 120E 150E

°C change

0.5 1 1.5 2 180 150W 120W 90W 60W

80N 60N 40N 20N V7

0 EQ

O N 20S 40S 60S 80S

BON 60N 40N

N 20N LO Q E O CV 20S

40S 60S 80S

1n

O co O N

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

4 5 6

BON 60N 40N 20N EQ

20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80s

80N 60N 40N 20N EQ

20S 40S 60S BOS

Appendix A/24

Al-mid, JJA Temperature

D

The Finnish Environment 433

180 150W 120W 90W 80N

60N 40N

O1 20N E0

O N 20S

40S 60S 80S

80N 60N 40N U1 20N

E0

O

N 20S

40S 60S 80S

80N 60N 40N

07 20N CO EQ

O N 20S

40S 60S 80S

80N 60N 40N 20N

EQ

20S 40S 60S 80S

80N 60N 40N 20N EO 20S 40S 60S 80S

80N 6014 40N 20N EQ 20S 40S 60S 80S

Median Range

60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180

~-___.~_"~-~.•~~~~

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180

Appendix A/25

Al-mid, SON Temperature

'C change

I I I I I I L I 1

0.5 1 1.5 2 3 4 5 6

The Finnish Environment 433

m

Range

60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W

0 30E BOW 30W

150W 120W 90W 600 90E 120E 150E

180180 0 30E 60E 90E 120E 150E

Median of % changes Range of % changes

BON 60N 40N

N 20N

® EQ

20S 40S 60S 80S

180 80N 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N

co 20N EQ O N 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

4!

O EQ

N O 20S 40S 60S BOS

BON 60N 40N 20N EQ 20S 40S 60S 80S 180 180 150W 120W 90W 60W 30W

-50 -30 -20 -10 0 10 20 30 50 10 20 30 40 50 75 100

80N 60N 40N 20N

Median

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Appendix A/26

A Annual Precipitation

m

The Finnish Environment 433

Range

30W 0 30E

Median

30W 0 30E

60W 60E 90E

180 150W 120W 90W 120E 150E 180180 150W 120W 90W 60W 60E 90E 120E 150E

150W 120W 90W 60W 30W 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180

Median of % changes Range of % changes

I I L

~'+

"IL. ~iii►~•~

. ~.

0 30E 60E 90E 120E 150E 180

80N 60N

80N 60N 40N 20N EQ 20S 40S 60S 80S 180 80N

60N 40N 20N 1n N EQ O N 20S

40S 60S 80S

80N 60N 40N

N 20N O Vn EQ O N 20S

40S 60S 80S

BON 60N 40N f!) 20N CO EQ N 0 20S

40S 60S 80S

40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

~.0•41.--4'.

i

:1 , , ‘‘.‘' 7.4

• ~ ` ii

dip

Appendix A/21

Al-mid, DJF Precipitation

-50 -30 -20 -10 0 10 20 30 50 10 20 30 40 50 75 100

The Finnish Environment 433

m

1 1 NE._..:._~

1 1 1 1

-50 -30 -20 -10 0 10 20 30 50 10 20 30 40 50 75 100

Appendix A128

Al-mid, MAM Precipitation

Median

180 150W 120W 90W 80N

60N 40N V7 20N

0 EQ

O N 20S

40S 60S 80S 80N 60N 40N fN 20N V7 EQ O N 20S

40S 60S 80S

BON 60N 40N 1n 20N CO EQ O N 20S

40S 60S 80S 180

180 80N 60N

80N 60N 40N 20N EQ 20S 40S 60S 80S 180 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W

Range

30W 0 30E 60E 90E 120E 150E

40N 20N EQ 20S 400 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Median of % changes Range of % changes

m

The Finnish Environment 433

Median Range

0 30E 60W 30W 0 30E 60E 90E 120E 150E 150W 120W 90W 60E

180 150W 120W 90W 180180 60W 30W 90E 120E 150E

180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

10 20 30 40 50 75 100 80N

60N 40N 20N CO CNI EQ

O N 20S

40S 60S 80S

80N 60N 40N

0) 20N 0 If/ EQ N O 20S

40S 60S 80S

180 80N 60N

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E Median of % changes

-50 -30 -20 -10 0 10 20 30 50 BON

60N 40N 20N EQ 20S 40S 60S 80S 180

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

Range of % changes

.11112. ,,

I••I•111E_

Appendix A/29

Al-mid, JJA Precipitation

The Finnish Environment 433

m

r

40N 20N EQ 20S 40S 60S BOS

80N 60N 40N 20N EQ 20S 40S 60S 805

Appendix A/30

Al-mid, SON Precipitation

180 80N 60N

0 N 0 N

180 BON 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S BON 60N 40N 20N EQ 20S 40S 60S 80S

180 150W 120W 90W 60W 30W 0 30E 60E 90E

Median of % changes

MEMO

Median Range

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

I I f

90E 120E 150E

100

80N 60N 40N 20N EQ 20S 40S 60S 80S 180 120E 150E 180180 150W 120W 90W 60W 30W 30E 60E

Range of % changes

I I I

-50 -30 -20 -10 0 10 20 30 50 10 20 30 40 50 75

m

The Finnish Environment 433

80N 60N 40N

1n 20N O EO O N 20S

40S 60S 80S

80N 60N 40N

f!! 20N lC) EQ O N 20S

40S 60S 80S 80N 60N 40N 20N EQ 20S 40S 60S 80S 180

60E 90E 120E 150E 180 80N 60N 40N 20N EO 20S 40S 60S 80S

BON 60N 40N 20N EQ 20S 403 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S

60W 30W 0 30E 60E 90E 120E 150E 180

Median Range

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E

150W 120W 90W 60W 30W 30E 60E 90E 120E 150E 180180 150W 120W 90W .;:~-~~~t,,.

,~

Appendix A/31 Figures A31-A40. The A2-high characterization of temperature and precipitation change

relative to 1961-1990. Each figure shows maps for the 2020s (top), 2050s (middle) and 2080s (bottom). The left hand panel shows median changes from 10 GCM simulations.

The right hand panel shows the range of GCM results. Temperature changes (°C) are shown in Figures A31-A3S; precipitation changes (percent) in Figures A36-A40. Consecu- tive figures show annual and seasonal (December-February, March-May, June-August and September-November) mean changes.

A2-high, Annual Temperature

°C change

0.5 1.5 2 3 4 5 6

The Finnish Environment 433

m

80N 60N 40N

1n 20N

00 EQ O N 20S

40S 60S 80S 180

Median Range

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180 80N

60N 40N

N 20N EQ O

N 20S 40S 60S 806

80N 60N 40N

fN 20N LO EC) O

N 20S 40S 60S 80S

30W 30E 60E 90E 180

30E 60E 150E 180180 60W 30W 0

°C change

4 3

2 5 6

0.5

90E 120E

1 1.5

120E 150E 150W 120W 90W 60W

150W 120W 90W

80N 60N 40N 20N EG!

200 40S 605

80N 60N 40N 20N EO

20S 400 60S BOS

Appendix A/32

A2-high, DJF Temperature

m

The Finnish Environment 433

Range

30W 0 30E 30E 60E

60W 30W 0 90E 120E 150E 180180 60W 60E 90E 120E 150E

180 150W 120W 90W 150W 120W 90W

Median

80N 60N 40N

N 20N O N EQ O N 20S

40S 60S 80S

80N 60N 40N

N 20N

O EQ

~ O N 20S

40S 60S 80S BON 60N 40N

tn 20N

00 EC/E

O N 20S

40S 60S 805

180 B0N 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 805 90W 60W 30W

30E 0 30W

60W 180180 0 30E 60E 90E 120E 150E 180

°C change

0.5 5 6

60E 90E 120E 150E 150W 120W

1 1.5 2 3 4

180 150W 120W 90W

Appendix A/33

A2-high, MAM Temperature

The Finnish Environment 433

m

180 80N 60N 40N 20N N

® EQ

O N 20S

40S 60S 80S 80N 60N 40N

to 20N

LO EQ

O N 20S

40S 60S 80S

80N 60N 40N

1n 20N

co EQ O

N 20S 40S 60S 80S 180

Median Range

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 100180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180 BON 60N

120E 150E 180 90E

60E

0 30E

0 30E 60E 150E 180180

°C change I I I

6 5 4 3 2 0.5

90E 120E

1 1.5

150W 120W 90W 60W 30W 150W 120W 90W 60W 30W

40N 20N EQ 20S 40S 60S BOS

BON 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S

Appendix A/34

A2-high, JJA Temperature

0

The Finnish Environment 433

Range

30W 0 30E

Median

30W 0 30E 60E

60W 90E 120E 150E 180180 60W 60E 90E 120E 150E

150W 120W 90W 150W 120W 90W

30E 60E

2 3 4 5 6

0

180 150W 120W 90W 60W 30W 180180 150W 120W 90W 60W 30W 90E 120E 150E 180

180 80N BON 40N V7 20N

O E0 O N 20S 40S 60S 80S

80N 60N 40N U1 20N

EQ O N 20S

40S 60S 80S

80N 60N 40N

y 20N

00 EQ 0 CV 20S 40S 60S 80S

180 BON 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80s

80N 60N 40N 20N EQ 20S 40S 60S 809 30E 60E 90E 120E 150E

I I 0.5 1 1.5

°C change

~ - -

tie

Appendix A/35

A2-high, SON Temperature

The Finnish Environment 433

m

80N 60N 40N 20N EQ 20S 40S 60S 80S 0 N

N 0

N

80N 60N 40N 20N EQ 20S 405 60S 80S

120E 150E 150W 120W 90W 60W 30W 180 150W 120W 90W 60W 30W 0 30E 60E 90E

Median of % changes

20 10 10 20 30 50

-50 -30 -20 -10 0 30 40 50

Range of % changes

180180 0

80N 60N 40N 20N EQ 206 405 60S 80S 180 80N

60N 40N U1 20N 00 EQ O N 20S

40S 60S 805

30E 60E 90E 120E 150E

75 100

Appendix A/36

A2-high, Annual Precipitation

Median

180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 80N

40N 20N CO

O EQ N 20S

40S 60S 80S

Range

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180 80N 60N 40N 20N EQ 20S 40S 60S 80S

The Finnish Environment 433

Median Range

0 30E 60W 30W 0 30E 60E 90E 120E 150E 150W 120W 90W 60E

180 150W 120W 90W 180180 60W 30W 90E 120E 150E

0 N

00 O

N 80N 60N 40N 20N EQ 20S 40S 60S 80S

I 1 ~ 1 I

180180 150W 120W 90W 60W 30W

30 40 50

0 30E 60E 90E 120E 150E 180

75 100 80N

60N 40N N 20N

EQ 0 N 20S

180 80N 60N 40N 20t4 EQ 20S 40S 60S 80S

60N ~ >v

_ . 1

W 20N , r.r

.\I Ö

~ -4 ,~.

N 20S t

40S 60S 80S 40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S 80N 60N 40N 20N EQ 20S 40S 60S 80S 180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Median of % changes

10 20 -50 -30 -20 -10 0 10 20 30 50

Range of % changes

I I l

- ~-

.~- ~

, ''~

. ~~'ti~

a '~

. `

%

-"Witr. y~

~~~'-

ti

~^V Å' 411110

v4iPt

MCA ) ~

Appendix A/37

A2-high, DJF Precipitation

The Finnish Environment 433

m

Median Range 0

60W 30E 60E

150W 120W 90W 30W 90E 120E 150E

60W 30W 0 30E 60E 90E 120E 150E 180180

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Median of % changes Range of % changes

-50 -30 -20 -10 0 10 20 30 50 10 20 30 40 50 75 100

180 150W 120W 90W 80N

60N 40N 0) 20N

N EQ 0 N 20S

40S 60S 80S

180 80N 60N 40N 20N EQ 20S 40S 60S 80S

80N 60N 40N 0) 20N

N EQ O N 20S

40S 60S 80S

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

80N 60N 40N 20N EQ 20S 40S 60S 80S 180

80N 60N 40N 20N EQ 20S 40S 60S 80S

Appendix A/38

A2-high, MAM Precipitation

m

The Finnish Environment 433

Range 0 Median

30E 60E 90E 120E 150E 60W 30W

150W 120W 90W 60W 30E 60E 90E 120E 150E 180180

90W 30W 0 150W 120W

120E 150E 180 150W 120W 90W 60W 30W 0 30E 60E 90E

180180 150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E

Median of % changes

-50 -30 -20 -10 0 10 20 30 50 10 20 30 40 50 75 100

180 80N 60N 40N

in 20N

EQ

O

N 209

40S 60S 80S BON 60N 40N

U) 20N

EQ

®

N 20S

40S 60S O0S

180 80N 60N

Range of % changes

l l l l i lIIIII

80N 60N 40N 20N EQ 20S 40S 60S 80S 100

80N 60N 40N 20N EQ 20S 40S 60S 80S 40N 20N- EQ 20S 40S 60S 80S

Nyai~

~", r~►- *~

wilk"- n..` IF .

I I I I

80N 60N 40N 20N EQ 20S 40S 60S 80S

Appendix A/39

A2 high, JJA Precipitation

The Finnish Environment 433

0

180 80N 60N 40N 20N U) 0 EQ O N 20S

405 60S 80S 80N 60 40N 20N U) Lo E EQ CV ® 20S 40S 60S 80S 80N 60N 40N 20N U)

O

ODEQ

O

N 20S 40S 60S 80S 180

Median Range

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W O 30E 60E 90E 120E 150E 180 80N 60N 40N 20N EQ 20S 40S 60S 80S 80N 60N 40N 20N EQ 20S 40S 60S 80S

150W 120W 90W 60W 30W 0 30E 60E 90E 120E 150E 180180 150W 120W 90W 60W 30W O 30E 60E 90E 120E 150E 80N 60N 40N 20N EQ 20S 40S 60S 80S 180 Median of % changes

-50 -30 -20 -10 0 10 20 30 50

Range of % changes

I I MI

10 20 30 40 50 75 100 Appendix A/40

A2-high, SON Precipitation

0

The Finnish Environment 433

Appendix B: Regional Scatter Plots of Seasonal Temperature and Precipitation Change under the Four SRES-Based Scenarios

Appendix B/I

Scatter plots for the thirty two world regions listed in Table 10 are shown in Fig-ures B1-B32. Characterizations are presented for three 30-year time periods in the future relative to the 1961-1990 baseline centred on 2025, 2055 and 2085. Each scatter plot depicts scaled outputs of mean seasonal temperature and precipita-tion change over the grid boxes representing a region from each of the ten GCM simulations (grid boxes differ between models). These simulations are described further in Section 4. For a given time period, lines connect four points for each GCM simulation. These are the standardized regional changes in climate from the GCM, linearly scaled according to the global warming from each of the four SRES-based scenarios (see Figure Bi). Note that the order of the points along a line is the same for all plots. Moreover, since linear scaling has been applied to the same pattern of change for all time periods, the relative positions of different lines remain invariant, extending outwards from the origin through time.

i

B1-low

i

82-mid Al-mid

I i

A2-high

I i 1400-year

control variability:

HadCM2 run (natural

±1 and 2 SD) 1000-year GFDL

control run (nätu variability: ±1 an al

2 SD)

Temperature change

Figure Bi. Main features of the scatter plots

Also plotted are the ±1 and ±2 standard deviation (denoted as std in the Figures) limits of overlapping 30-year mean anomalies5 relative to the long-term mean from two unforced simulations: the 1400-year HadCM2 and the 1000-year GFDL unforced simulations. These are plotted as ellipses (explained below) and are used to indicate natural multi-decadal variability (MDV) unforced by green-house gas concentration changes or any other forcing factor external to the cli-mate system. The significance of the scenario changes in clicli-mate can be inter-preted relative to these model-based limits, if we assume that they provide a reasonable representation of natural climate variability. Recent comparisons be-tween the HadCM2 unforced simulation and palaeoclimatic reconstructions of climatic variability during the past millennium (Jones et al., 1998; Hulme et al., 1999) provide some support for this assumption.

5 Note that results are similar when using non-overlapping 30-year anomalies

The Finnish Environment 433

Precipitation change

m

Appendix B/2

The length of the lines indicates the range of uncertainty in the magnitude of change brought about by the SRES-based scenario assumptions of different emissions trajectories and climate sensitivity. The spread of different lines on each plot indicates the extent of between-model (or intra-ensemble) disagree-ment across this sample of GCM outputs.

The ellipses have been calculated by assuming that the distributions of 30-year mean temperature and 30-30-year mean precipitation in the unforced simula-tions are normally distributed. In addition, recognising that modelled tempera-tures and precipitation are correlated in some seasons and regions, the ellipses are also elongated in the direction of the correlation. There is good agreement between the GFDL and HadCM2 ellipses in the majority of the regional plots presented in Figures B1-B32, although there are some regional cases that show large differences in magnitude in dry seasons (e.g. Figure B15: DJF, MAM and SON over the Sahara; Figure B25: MAM, JJA and SON over northern Australia) or differences in the sign of the correlation (e.g. Figure B16: DJF over West Africa).

Figure Bii illustrates the full elliptical distribution for the northern Asia re-gion in winter based on the GFDL unforced simulation. The idealized joint nor-mal distribution is shown as a three-dimensional surface. The individual 30-year mean modelled temperature and precipitation anomalies are plotted as points projected onto the idealized surface. In this case, the distribution of 30-year val-ues is slightly skewed towards positive temperature and precipitation anoma-lies, with a longer tail towards negative anomalies. The orientation of the ellipse indicates a fairly strong positive correlation between modelled 30-year mean winter temperatures and precipitation under unforced conditions in this region, which is consistent with the observation that warmer winters tend to be associat-ed with higher precipitation.

Figure Bii. Modelled multi-decadal variability of winter (DJF) temperature and precipitation in northern Asia using the GFDL 1000-year unforced simulation. The surface is an idealized joint normal distribution fitted to overlapping 30-year mean temperature and precipitation anomalies relative to the 1000-year mean. Original data points are shown as dots projected onto the idealized surface. The ellipse is orientated in the direction of the correlation be-tween temperature and precipitation.

The Finnish Environment 433

0

Appendix B/3 Figures 81-832. Scatter plots showing seasonal temperature and precipitation change by

the 2020s (top), 2050s (middle) and 2080s (bottom) relative to 1961-1990 under the four SRES-based scenarios for 32 world regions (c f. Table 10 and Figure 6). Also shown (as el-lipses) is natural"multi-decadal variability as simulated by the GFDL and HadCM2 GCMs.

There are two pages of graphs per Figure and region and three graphs per season: Decem-ber to February (first page, left), March-May (first page, right), June-August (second page, left) and September-November (second page, right).

There are two pages of graphs per Figure and region and three graphs per season: Decem-ber to February (first page, left), March-May (first page, right), June-August (second page, left) and September-November (second page, right).