• Ei tuloksia

CO 2 adsorption via TGA

Samples for adsorption studies were first degassed in vacuum, then saturated with CO2 at 20 °C, heated to 100 °C under N2 (Pre-heating) and cooled down under CO2

prior to measurements (Pre-cooling, Figure 36). Then two cycles of heating (1st and 2nd) without CO2 purge and cooling under CO2 purge were conducted.

Figure 36 TG gas adsorption-desorption sequence and the mass changes of PGEMA 28.

The adsorption data for the studied samples are shown in Table 6. N2 adsorption was negligible in all samples. However, with CO2, there were significant differences between the samples. Adsorption of CO2 to the salt form PAEMA and PEO-PAEMA was minimal and most of the adsorption is most likely physical adsorption into the polymer matrix (Figure 37A and 38A). This is supported by the relatively low release temperatures of CO2 below 60 °C for both polymers (Figure 37B and 38B). When the polymers were regenerated into their free base forms, an impressive increase in CO2 adsorption capacity is observed. PAEMA REG has a capacity of over 1.7 mmol/g (200 % increase) and PEO-PAEMA REG over 0.5 mmol/g (50 %). These can be attributed to the higher amount of available amine groups for CO2 binding. 121

CO2adsorption and desorption data.

a Values are not exactly 0, but very small and can be considered negligible.

bCalculated values based on theoretical 100% NH2content.

The increased interactions between the polymers and CO2are also suggested by the increase in heat of desorption in DSC measurements (Figure 37D and 38D), namely, the heat of desorption of CO2is 110 J/g for PAEMA REG and 54 J/g for PEO-PAEMA REG compared to 2 J/g of PAEMA and ~0 J/g for PEO-PAEMA. The temperatures of the onset of desorption of CO2from TG are also increased due to the stronger interaction between the gas and the material (Figure 37B and 38B).

When PAEMA and PEO-PAEMA are modified, the more basic guanidine increases the capacity up to a maximum of 2.4 mmol/g with 7 % modification, a 35 % increase compared to PAEMA REG. The capacity of PEO-PGEMA goes up to 1.8 mmol/g with 22 % guanidinylation degree, a 260 % increase compared to PEO-PAEMA REG. The theoretical maximum amine efficiency of dry adsorption CO2for

For the polymers in this study, the efficiencies are 0.29 for PAEMA REG and 0.10 for PEO-PAEMA REG with increasing efficiency when modified (Table 6). This suggests that not all functional groups participate in the adsorption process. The morphology of materials also has an effect on the available sites for adsorption.

According to SEM, homopolymers PAEMA, PAEMA REG and PGEMA 7 formed microspheres of size 1-5 μm, while irregular granular morphology was observed in PEO-PAEMA, PEO-PAEMA REG and PEO-PGEMA 22. The amine efficiency values combined with SEM indicate that the morphology of the samples affect the amine distribution and induce steric hindrance for adsorption. 123,152 The differences between the homopolymer and block copolymer could be related to the crystalline nature of the PEO-block affecting the morphology of the copolymer samples and lowering the adsorption performance. 159

Figure 38 TG data of the PEO-PAEMA copolymers visualized, CO2 capacity (A), Desorption temperature (B), Kinetics of desorption (C), Heat of desorption (D), 10 min capacity (E) and recyclability during one cycle (F).

NMR measurements showed that guanidine functions assist in CO2 binding more strongly to adjacent amines than to plain amines in an aqueous environment.

While this is not directly relatable to the dry adsorbtion testing conditions, it reveals differences in CO2 interactions between the two polymers. When the amount of modified side groups is increased considerably, the total adsorption capacity decreases accompanied by lowering of desorption onsets and the heats of desorption. According to NMR-studies, residual CO2 is present in the modified PGEMA solutions after heating (Figure 34 and 35). Residual carbamate is also observed after synthesis. Carbamate binds active amines and decreases potential adsorbtion locations. However, heating should decompose carbamate and other

This suggests that during desorption, not all of the adsorbed CO2 is released from the guanidine polymers, manifested as lower overall capacity when measured from mass changes.

As more guanidine is introduced, more CO2 remains adsorbed in the polymer as carbamate, lowering the observed capacity in TG-measurements further. Wang et al. observed a slight increase in carbamate concentration in the first 30 min when desorption was conducted via heating, suggesting that the desorption time of 15 min at 100 °C used in our experiments could be too short to completely regenerate our samples. 169 Also, guanidines have been shown to form stable carbamates with amines, having higher sorption at temperatures over 50 °C suggesting even further that, in our experiments, the adsorption/desorption conditions for guanidinylated polymers are not optimal. 153

Yet, other factors may explain the results as well. Steric restrictions may play a part due to the bulky guanidine preventing access to some side groups and affecting adsorption. 149,166,167 Another aspect is that guanidinylation may cause morphological changes in the material, such as crosslinking, that has been shown to decrease adsorption via fewer amines available, simultaneously increasing desorption performance due to increased physical adsorption and less stable carbamates. 166,170,171

All samples reached over 80 % of their adsorption capacity in under 10 minutes, indicating overall fast CO2 scavenging potential (Figure 37C and 38C). The adsorbance-desorbance recyclability was assessed by comparing the adsorbance between two heating cycles (Figure 37E and 38E). Recyclability improved overall in both PGEMA and PEO-PGEMA when guanidine was introduced. Regarding the energy consumption, desorption temperatures and heats of desorption also decreased with guanidinylation. Introducing PEO resulted in lower desorption temperatures and heats and improved recyclability but lower capacity and slower adsorption and desorption.

5 CONCLUSIONS

Colloidally stable dispersions of negatively charged nanodiamonds (ND) combined with amphiphilic poly(ethyleneoxide)-block-poly(dimethylaminoethyl methacrylate)-block-dodecyl (PEO-PDMAEMA-C12) copolymers were prepared and studied. The binding interactions between the ND surface and polymer were studied with NMR spectroscopy and showed dependence on the PEO length.

Nanodiamond-polyelectrolyte complex dispersions with large positive zeta potential, neutral pH, improved colloidal stability and particle sizes below 200 nm were obtained.

A series of cross-linked, ND containing polyelectrolyte copolymer films based on poly(butylacrylate) (PBA) and PDMAEMA were prepared by photopolymerization and their mechanical-, swelling- and stimuli-responsive properties were investigated. Addition of plain NDs only slightly changed the mechanical properties of the films due to aggregation and sedimentation of the NDs. When NDs complexed with PEO-PDMAEMA-C12 were used, improved dispersion and interaction of NDs with the P(BA-DMAEMA) matrix resulted in stiffer materials that had over a ~161%

increase in modulus and ~118% increase in stress at break. These films showed a reversible thermal phase-transition in basic environments.

Poly(aminoethyl methacrylate) (PAEMA) and poly(ethylene oxide-block-aminoethyl methacrylate) (PEO-PAEMA) were synthesized via RAFT and modified with guanidine (PGEMA and PEO-PGEMA). NMR studies under CO2 revealed a stronger affinity of the guanidinylated polymers towards CO2. The polymers with free base amines and guanidinylation had high CO2 adsorption capacities, lower desorption onset temperatures and recyclability. A raw unprocessed material with 2.4 mmol/g capacity, over 90% of capacity reached in 10 min and desorption temperature under 80 °C is certainly very promising for future applications in CO2

adsorbents.

REFERENCES

(1) Baig, N.; Kammakakam, I.; Falath, W.; Kammakakam, I. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges.

Mater. Adv. 2021, 2 (6), 1821–1871. https://doi.org/10.1039/d0ma00807a.

(2) Hulla, J.; Sahu, S.; Hayes, A. Nanotechnology. Hum. Exp. Toxicol. 2015, 34 (12), 1318–1321. https://doi.org/10.1177/0960327115603588.

(3) Hassanien Mohamed Darweesh, H. Nanomaterials: Classification and

Properties-Part I. Nanoscience 2018, 1 (1), 1.

https://doi.org/10.31058/j.nano.2018.11001.

(4) Hybrid Polymer Composite Materials: Structure and Chemistry, 1st ed.;

Thakur, V. K., Thakur, M. K., Pappu, A., Eds.; Woodhead Publishing, 2017.

(5) Hybrid and Hierarchical Composite Materials; Chang-Soo, K., Charles, R., Tomoko, S., Eds.; Springer International Publishing, 2015.

(6) Hybrid Polymer Composite Materials: Properties and Characterisation, 1st ed.; Thakur, V. K., Thakur, M. K., Pappu, A., Eds.; Woodhead Publishing, 2017.

(7) Hybrid Polymer Composite Materials: Applications, 1st ed.; Thakur, V. K., Thakur, M. K., Pappu, A., Eds.; Woodhead Publishing, 2017.

(8) Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chem. Rev. 2015, 115 (11), 4744–4822.

https://doi.org/10.1021/cr500304f.

(9) Krueger, A. The Structure and Reactivity of Nanoscale Diamond. J. Mater.

Chem. 2008, 18 (13), 1485. https://doi.org/10.1039/b716673g.

(10) Carbon Materials and Nanotechnology; Krueger, A., Ed.; Wiley, 2010.

(11) Detonation Nanodiamonds: Science and Applications, 1st ed.; Vul, A., Shenderova, O., Eds.; Taylor & Francis, 2014.

(12) Krueger, A.; Lang, D. Functionality Is Key: Recent Progress in the Surface Modification of Nanodiamond. Adv. Funct. Mater. 2012, 22 (5), 890–906.

https://doi.org/10.1002/adfm.201102670.

(13) Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The Properties and Applications of Nanodiamonds. Nat. Nanotechnol. 2012, 7 (1), 11–23.

https://doi.org/10.1038/nnano.2011.209.

(14) Ultrananocrystalline Diamond: Synthesis, Properties and Applications:

Second Edition, 2nd ed.; Shenderova, O. A., Gruen, D., Eds.; Elsevier Inc., 2012.

(15) Zhang, Y.; Rhee, K. Y.; Hui, D.; Park, S.-J. A Critical Review of Nanodiamond Based Nanocomposites: Synthesis, Properties and Applications. Compos.

Part B Eng. 2018, 143 (December 2017), 19–27.

https://doi.org/10.1016/j.compositesb.2018.01.028.

(16) Mochalin, V. N.; Gogotsi, Y. Nanodiamond–Polymer Composites. Diam.

Relat. Mater. 2015, 58, 161–171.

https://doi.org/10.1016/j.diamond.2015.07.003.

(17) Turcheniuk, K.; Mochalin, V. N. Biomedical Applications of Nanodiamond (Review). Nanotechnology 2017, 28 (25), 252001.

https://doi.org/10.1088/1361-6528/aa6ae4.

(18) Shenderova, O. A.; McGuire, G. E. Science and Engineering of Nanodiamond Particle Surfaces for Biological Applications (Review). Biointerphases 2015, 10 (3), 030802. https://doi.org/10.1116/1.4927679.

(19) Taha-Tijerina, J. J.; Narayanan, T. N.; Tiwary, C. S.; Lozano, K.; Chipara, M.;

Ajayan, P. M. Nanodiamond-Based Thermal Fluids. ACS Appl. Mater.

Interfaces 2014, 6 (7), 4778–4785. https://doi.org/10.1021/am405575t.

(20) Paget, V.; Sergent, J. A.; Grall, R.; Altmeyer-Morel, S.; Girard, H. A.; Petit, T.;

Gesset, C.; Mermoux, M.; Bergonzo, P.; Arnault, J. C.; et al. Carboxylated Nanodiamonds Are Neither Cytotoxic nor Genotoxic on Liver, Kidney, Intestine and Lung Human Cell Lines. Nanotoxicology 2014, 8 (sup1), 46–

56. https://doi.org/10.3109/17435390.2013.855828.

(21) Reineck, P.; Capelli, M.; Lau, D. W. M.; Jeske, J.; Field, M. R.; Ohshima, T.;

Greentree, A. D.; Gibson, B. C. Bright and Photostable Nitrogen-Vacancy Fluorescence from Unprocessed Detonation Nanodiamond. Nanoscale 2017, 9 (2), 497–502. https://doi.org/10.1039/C6NR07834F.

(22) Yu, S.-J.; Kang, M.; Chang, H.; Chen, K.; Yu, Y. Bright Fluorescent Nanodiamonds: No Photobleaching and Low Cytotoxicity. J. Am. Chem. Soc.

2005, 127 (50), 17604–17605. https://doi.org/10.1021/ja0567081.

(23) Jee, A.-Y.; Lee, M. Surface Functionalization and Physicochemical Characterization of Diamond Nanoparticles. Curr. Appl. Phys. 2009, 9 (2), e144–e147. https://doi.org/10.1016/j.cap.2008.12.045.

(24) Karami, P.; Salkhi Khasraghi, S.; Hashemi, M.; Rabiei, S.; Shojaei, A.

Polymer/Nanodiamond Composites - a Comprehensive Review from Synthesis and Fabrication to Properties and Applications. Adv. Colloid

Interface Sci. 2019, 269, 122–151.

https://doi.org/10.1016/j.cis.2019.04.006.

(25) Dolmatov, V. Y. Detonation Synthesis Ultradispersed Diamonds: Properties and Applications. Russ. Chem. Rev. 2001, 70 (7), 607–626.

https://doi.org/10.1070/RC2001v070n07ABEH000665.

(26) Krüger, A.; Kataoka, F.; Ozawa, M.; Fujino, T.; Suzuki, Y.; Aleksenskii, A. E.;

Vul’, A. Y.; Ōsawa, E. Unusually Tight Aggregation in Detonation Nanodiamond: Identification and Disintegration. Carbon N. Y. 2005, 43 (8), 1722–1730. https://doi.org/10.1016/j.carbon.2005.02.020.

(27) Ōsawa, E. Monodisperse Single Nanodiamond Particulates. Pure Appl. Chem.

2008, 80 (7), 1365–1379. https://doi.org/10.1351/pac200880071365.

(28) Pentecost, A.; Gour, S.; Mochalin, V.; Knoke, I.; Gogotsi, Y. Deaggregation of Nanodiamond Powders Using Salt- and Sugar-Assisted Milling. ACS Appl.

Mater. Interfaces 2010, 2 (11), 3289–3294.

https://doi.org/10.1021/am100720n.

(29) Krueger, A.; Ozawa, M.; Jarre, G.; Liang, Y.; Stegk, J.; Lu, L. Deagglomeration and Functionalisation of Detonation Diamond. Phys. Status Solidi Appl.

Mater. Sci. 2007, 204 (9), 2881–2887.

https://doi.org/10.1002/pssa.200776330.

(30) Turcheniuk, K.; Trecazzi, C.; Deeleepojananan, C.; Mochalin, V. N. Salt-Assisted Ultrasonic Deaggregation of Nanodiamond. ACS Appl. Mater.

Interfaces 2016, 8 (38), 25461–25468.

(31) Dideikin, A. T.; Aleksenskii, A. E.; Baidakova, M. V.; Brunkov, P. N.;

Brzhezinskaya, M.; Davydov, V. Y.; Levitskii, V. S.; Kidalov, S. V.;

Kukushkina, Y. A.; Kirilenko, D. A.; et al. Rehybridization of Carbon on Facets of Detonation Diamond Nanocrystals and Forming Hydrosols of Individual

Particles. Carbon N. Y. 2017, 122, 737–745.

https://doi.org/10.1016/j.carbon.2017.07.013.

(32) Nunn, N.; Torelli, M.; McGuire, G.; Shenderova, O. Nanodiamond: A High Impact Nanomaterial. Curr. Opin. Solid State Mater. Sci. 2017, 21 (1), 1–9.

https://doi.org/10.1016/j.cossms.2016.06.008.

(33) Aleksenskiy, A. E.; Eydelman, E. D.; Vul’, A. Y. Deagglomeration of Detonation Nanodiamonds. Nanosci. Nanotechnol. Lett. 2011, 3 (1), 68–74.

https://doi.org/10.1166/nnl.2011.1122.

(34) Gibson, N.; Shenderova, O.; Luo, T. J. M.; Moseenkov, S.; Bondar, V.; Puzyr, A.; Purtov, K.; Fitzgerald, Z.; Brenner, D. W. Colloidal Stability of Modified Nanodiamond Particles. Diam. Relat. Mater. 2009, 18 (4), 620–626.

https://doi.org/10.1016/j.diamond.2008.10.049.

(35) Wuest, K. N. R.; Trouillet, V.; Köppe, R.; Roesky, P. W.; Goldmann, A. S.;

Stenzel, M. H.; Barner-Kowollik, C. Direct Light-Induced (Co-)Grafting of Photoactive Polymers to Graphitic Nanodiamonds. Polym. Chem. 2017, 8 (5), 838–842. https://doi.org/10.1039/C6PY02035F.

(36) Kennedy, Z. C.; Barrett, C. A.; Warner, M. G. Direct Functionalization of an Acid-Terminated Nanodiamond with Azide: Enabling Access to 4-Substituted-1,2,3-Triazole-Functionalized Particles. Langmuir 2017, 33 (11), 2790–2798. https://doi.org/10.1021/acs.langmuir.6b04477.

(37) Barras, A.; Lyskawa, J.; Szunerits, S.; Woisel, P.; Boukherroub, R. Direct Functionalization of Nanodiamond Particles Using Dopamine Derivatives.

Langmuir 2011, 27 (20), 12451–12457. https://doi.org/10.1021/la202571d.

(38) Zhang, X.; Fu, C.; Feng, L.; Ji, Y.; Tao, L.; Huang, Q.; Li, S.; Wei, Y.

PEGylation and PolyPEGylation of Nanodiamond. Polymer (Guildf). 2012, 53 (15), 3178–3184. https://doi.org/10.1016/j.polymer.2012.05.029.

(39) Huang, H.; Pierstorff, E.; Osawa, E.; Ho, D. Active Nanodiamond Hydrogels for Chemotherapeutic Delivery. Nano Lett. 2007, 7 (11), 3305–3314.

https://doi.org/10.1021/nl071521o.

(40) Huang, L.-C. L.; Chang, H.-C. Adsorption and Immobilization of Cytochrome c on Nanodiamonds. Langmuir 2004, 20 (14), 5879–5884.

https://doi.org/10.1021/la0495736.

(41) Lee, J. W.; Lee, S.; Jang, S.; Han, K. Y.; Kim, Y.; Hyun, J.; Kim, S. K.; Lee, Y.

Preparation of Aggregated Fluorescent Nanodiamonds (FNDs) by Non-Covalent Coating with a Block Copolymer and Proteins for Enhancement of Intracellular Uptake. Mol. Biosyst. 2013, 9 (5), 1004.

https://doi.org/10.1039/c2mb25431j.

(42) Chen, M.; Zhang, X.-Q.; Man, H. B.; Lam, R.; Chow, E. K.; Ho, D.

Nanodiamond Vectors Functionalized with Polyethylenimine for SiRNA Delivery. J. Phys. Chem. Lett. 2010, 1 (21), 3167–3171.

https://doi.org/10.1021/jz1013278.

(43) Karakoti, A. S.; Das, S.; Thevuthasan, S.; Seal, S. PEGylated Inorganic Nanoparticles. Angew. Chemie Int. Ed. 2011, 50 (9), 1980–1994.

(44) Wang, D.; Tong, Y.; Li, Y.; Tian, Z.; Cao, R.; Yang, B. PEGylated Nanodiamond for Chemotherapeutic Drug Delivery. Diam. Relat. Mater. 2013, 36, 26–34.

https://doi.org/10.1016/j.diamond.2013.04.002.

(45) Stubbs, E.; Laskowski, E.; Conor, P.; Heinze, D. A.; Karis, D.; Glogowski, E.

M. Control of PH and TemperatureResponsive Behavior of MPEG b -PDMAEMA Copolymers through Polymer Composition. J. Macromol. Sci.

Part A 2017, 54 (4), 228–235.

https://doi.org/10.1080/10601325.2017.1282694.

(46) Niskanen, J.; Wu, C.; Ostrowski, M.; Fuller, G. G.; Hietala, S.; Tenhu, H.

Thermoresponsiveness of PDMAEMA. Electrostatic and Stereochemical Effects. Macromolecules 2013, 46 (6), 2331–2340.

https://doi.org/10.1021/ma302648w.

(47) Stawski, D.; Nowak, A. Thermal Properties of Poly(N,N-Dimethylaminoethyl Methacrylate). PLoS One 2019, 14 (6), e0217441.

https://doi.org/10.1371/journal.pone.0217441.

(48) Manouras, T.; Koufakis, E.; Anastasiadis, S. H.; Vamvakaki, M. A Facile Route towards PDMAEMA Homopolymer Amphiphiles. Soft Matter 2017, 13 (20), 3777–3782. https://doi.org/10.1039/C7SM00365J.

(49) Jabeen, S.; Kausar, A.; Muhammad, B.; Gul, S.; Farooq, M. A Review on Polymeric Nanocomposites of Nanodiamond, Carbon Nanotube, and Nanobifiller: Structure, Preparation and Properties. Polym. Plast. Technol.

Eng. 2015, 54 (13), 1379–1409.

https://doi.org/10.1080/03602559.2015.1021489.

(50) Karami, P.; Salkhi Khasraghi, S.; Hashemi, M.; Rabiei, S.; Shojaei, A.

Polymer/Nanodiamond Composites - a Comprehensive Review from Synthesis and Fabrication to Properties and Applications. Adv. Colloid

Interface Sci. 2019, 269, 122–151.

https://doi.org/10.1016/j.cis.2019.04.006.

(51) Bhattacharya, M. Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials (Basel). 2016, 9 (4), 262. https://doi.org/10.3390/ma9040262.

(52) Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N. Some Basic Aspects of Polymer Nanocomposites: A Critical Review. Nano Mater. Sci. 2019, 1 (1), 2–30.

https://doi.org/10.1016/j.nanoms.2019.02.006.

(53) Kovačević, V.; Leskovac, M.; Lučić Blagojević, S.; Vrsaljko, D. Complex Adhesion Effects of Inorganic Nanofillersvs Microfillers in Polymer Composites. Macromol. Symp. 2005, 221 (1), 11–22.

https://doi.org/10.1002/masy.200550302.

(54) Shikata, S.; Tanno, T.; Teraji, T.; Kanda, H.; Yamada, T.; Kushibiki, J. I.

Precise Measurements of Diamond Lattice Constant Using Bond Method.

Jpn. J. Appl. Phys. 2018, 57 (11). https://doi.org/10.7567/JJAP.57.111301.

(55) Okada, A.; Usuki, A. Twenty Years of Polymer-Clay Nanocomposites.

Macromol. Mater. Eng. 2006, 291 (12), 1449–1476.

https://doi.org/10.1002/mame.200600260.

(56) Alishahi, E.; Shadlou, S.; Doagou-R, S.; Ayatollahi, M. R. Effects of Carbon Nanoreinforcements of Different Shapes on the Mechanical Properties of Epoxy-Based Nanocomposites. Macromol. Mater. Eng. 2013, 298 (6), 670–

678. https://doi.org/10.1002/mame.201200123.

(57) Morimune-Moriya, S.; Salajkova, M.; Zhou, Q.; Nishino, T.; Berglund, L. A.

Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films.

Biomacromolecules 2018, 19 (7), 2423–2431.

https://doi.org/10.1021/acs.biomac.8b00010.

(58) Morimune-Moriya, S.; Nishino, T. Strong, Tough, Transparent and Highly Heat-Resistant Acrylic Glass Based on Nanodiamond. Polymer (Guildf).

2021, 222 (December 2020), 123661.

https://doi.org/10.1016/j.polymer.2021.123661.

(59) Gannoruwa, A.; Sumita, M.; Kawahara, S. Highly Enhanced Mechanical Properties in Natural Rubber Prepared with a Nanodiamond Nanomatrix

Structure. Polymer (Guildf). 2017, 126, 40–47.

https://doi.org/10.1016/j.polymer.2017.08.025.

(60) Ullah, M.; Kausar, A.; Siddiq, M.; Subhan, M.; Abid Zia, M. Reinforcing Effects of Modified Nanodiamonds on the Physical Properties of Polymer-Based Nanocomposites: A Review. Polym. Plast. Technol. Eng. 2015, 54 (8), 861–879. https://doi.org/10.1080/03602559.2014.979505.

(61) Maitra, U.; Prasad, K. E.; Ramamurty, U.; Rao, C. N. R. Mechanical Properties of Nanodiamond-Reinforced Polymer-Matrix Composites. Solid State

Commun. 2009, 149 (39–40), 1693–1697.

https://doi.org/10.1016/j.ssc.2009.06.017.

(62) Ayatollahi, M. R.; Alishahi, E.; Doagou-R, S.; Shadlou, S. Tribological and Mechanical Properties of Low Content Nanodiamond/Epoxy Nanocomposites. Compos. Part B Eng. 2012, 43 (8), 3425–3430.

https://doi.org/10.1016/j.compositesb.2012.01.022.

(63) Liang, Y.; Ozawa, M.; Krueger, A. A General Procedure to Functionalize Agglomerating Nanoparticles Demonstrated on Nanodiamond. ACS Nano 2009, 3 (8), 2288–2296. https://doi.org/10.1021/nn900339s.

(64) Jesson, D. A.; Watts, J. F. The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification.

Polym. Rev. 2012, 52 (3), 321–354.

https://doi.org/10.1080/15583724.2012.710288.

(65) Meka, V. S.; Sing, M. K. G.; Pichika, M. R.; Nali, S. R.; Kolapalli, V. R. M.;

Kesharwani, P. A Comprehensive Review on Polyelectrolyte Complexes. Drug

Discov. Today 2017, 22 (11), 1697–1706.

https://doi.org/10.1016/j.drudis.2017.06.008.

(66) Jiang, F.; Chen, S.; Cao, Z.; Wang, G. A Photo, Temperature, and PH Responsive Spiropyran-Functionalized Polymer: Synthesis, Self-Assembly and Controlled Release. Polymer (Guildf). 2016, 83, 85–91.

https://doi.org/10.1016/j.polymer.2015.12.027.

(67) Freyer, J. L.; Brucks, S. D.; Campos, L. M. Fully Charged: Maximizing the Potential of Cationic Polyelectrolytes in Applications Ranging from Membranes to Gene Delivery through Rational Design. J. Polym. Sci. Part A

Polym. Chem. 2017, 55 (19), 3167–3174.

https://doi.org/10.1002/pola.28711.

(68) Dizge, N.; Epsztein, R.; Cheng, W.; Porter, C. J.; Elimelech, M. Biocatalytic and Salt Selective Multilayer Polyelectrolyte Nanofiltration Membrane. J.

Memb. Sci. 2018, 549 (October 2017), 357–365.

(69) Niskanen, J.; Tousignant, M. N.; Peltekoff, A. J.; Lessard, B. H. 1,2,3-Triazole Based Poly(Ionic Liquids) as Solid Dielectric Materials. Polymer (Guildf).

2021, 212 (September 2020).

https://doi.org/10.1016/j.polymer.2020.123144.

(70) Pramanik, N. B.; Regen, S. L. Hyperthin Membranes for Gas Separations via Layer-by-Layer Assembly. Chemical Record. 2019.

https://doi.org/10.1002/tcr.201900026.

(71) Yeo, J.-S.; Kang, M.; Jung, Y.-S.; Kang, R.; Lee, S.-H.; Heo, Y.-J.; Jin, S.-H.;

Kim, D.-Y.; Na, S.-I. In-Depth Considerations for Better Polyelectrolytes as Interfacial Materials in Polymer Solar Cells. Nano Energy 2016, 21, 26–38.

https://doi.org/10.1016/J.NANOEN.2016.01.003.

(72) Laschewsky, A. Recent Trends in the Synthesis of Polyelectrolytes. Curr.

Opin. Colloid Interface Sci. 2012, 17 (2), 56–63.

https://doi.org/10.1016/j.cocis.2011.08.001.

(73) Perrier, S. 50th Anniversary Perspective: RAFT Polymerization - A User Guide. Macromolecules 2017, 50 (19), 7433–7447.

https://doi.org/10.1021/acs.macromol.7b00767.

(74) Moad, G.; Rizzardo, E.; Thang, S. H. Living Radical Polymerization by the RAFT Process—A Third Update. Aust. J. Chem. 2012, 65 (8), 985–1076.

https://doi.org/https://doi.org/10.1071/CH12295.

(75) Yan, L.; Tao, W. One-Step Synthesis of Pegylated Cationic Nanogels of Poly(N,N′-Dimethylaminoethyl Methacrylate) in Aqueous Solution via Self-Stabilizing Micelles Using an Amphiphilic MacroRAFT Agent. Polymer

(Guildf). 2010, 51 (10), 2161–2167.

https://doi.org/10.1016/j.polymer.2010.03.036.

(76) Alidedeoglu, A. H.; York, A. W.; McCormick, C. L.; Morgan, S. E. Aqueous RAFT Polymerization of 2-Aminoethyl Methacrylate to Produce Well-Defined, Primary Amine Functional Homo- and Copolymers. J. Polym. Sci.

Part A Polym. Chem. 2009, 47 (20), 5405–5415.

https://doi.org/10.1002/pola.23590.

(77) McCormick, C. L.; Lowe, A. B. Aqueous RAFT Polymerization: Recent Developments in Synthesis of Functional Water-Soluble (Co)Polymers with Controlled Structures. Accounts of Chemical Research. 2004, pp 312–325.

https://doi.org/10.1021/ar0302484.

(78) Lowe, A. B.; Billingham, N. C.; Armes, S. P. Synthesis and Characterization of Zwitterionic Block Copolymers. Macromolecules 1998, 31 (18), 5991–5998.

https://doi.org/10.1021/ma980558f.

(79) Sigolaeva, L. V.; Pergushov, D. V.; Synatschke, C. V.; Wolf, A.; Dewald, I.;

Kurochkin, I. N.; Fery, A.; Müller, A. H. E. Co-Assemblies of Micelle-Forming Diblock Copolymers and Enzymes on Graphite Substrate for an Improved Design of Biosensor Systems. Soft Matter 2013, 9 (10), 2858–2868.

https://doi.org/10.1039/c2sm27298a.

(80) Liu, J.; Tao, L.; Yang, W.; Li, D.; Boyer, C.; Wuhrer, R.; Braet, F.; Davis, T. P.

Synthesis, Characterization, and Multilayer Assembly of PH Sensitive Graphene−Polymer Nanocomposites. Langmuir 2010, 26 (12), 10068–

10075. https://doi.org/10.1021/la1001978.

(81) Yang, H.-W.; Chen, J.-K.; Kuo, S.-W.; Lee, A.-W. Degradable Coronas Comprising Polyelectrolyte Complexes of PDMAEMA and Gelatin for PH-Triggered Antibiotic Release. Polymer (Guildf). 2014, 55 (11), 2678–2687.

(82) Yuan, T.; Dong, J.; Han, G.; Wang, G. Polymer Nanoparticles Self-Assembled from Photo-, PH- and Thermo-Responsive Azobenzene-Functionalized

PDMAEMA. RSC Adv. 2016, 6 (13), 10904–10911.

https://doi.org/10.1039/C5RA26894J.

(83) Li, T.; Shen, J.; Zhang, Z.; Wang, S.; Wei, D. A Poly(2-(Dimethylamino)Ethyl Methacrylate-Co-Methacrylic Acid) Complex Induced Route to Fabricate a Super-Hydrophilic Hydrogel and Its Controllable Oil/Water Separation. RSC Adv. 2016, 6 (47), 40656–40663. https://doi.org/10.1039/C6RA01820C.

(84) Brotzel, F.; Ying, C. C.; Mayr, H. Nucleophilicities of Primary and Secondary Amines in Water. J. Org. Chem. 2007, 72 (10), 3679–3688.

https://doi.org/10.1021/jo062586z.

(85) Comprehensive Organic Synthesis, 2nd ed.; Paul, K., Ed.; Elsevier Ltd, 2014;

Vol. 1.

(86) Ko, Y. G.; Shin, S. S.; Choi, U. S. Primary, Secondary, and Tertiary Amines for CO2 Capture: Designing for Mesoporous CO2 Adsorbents. J. Colloid

Interface Sci. 2011, 361 (2), 594–602.

https://doi.org/10.1016/j.jcis.2011.03.045.

(87) Rawalay, S. S.; Shechter, H. Oxidation of Primary, Secondary, and Tertiary Amines with Neutral Permanganate. A Simple Method for Degrading Amines to Aldehydes and Ketones. J. Org. Chem. 1967, 32 (10), 3129–3131.

https://doi.org/10.1021/jo01285a042.

(88) Thompson, K. L.; Read, E. S.; Armes, S. P. Chemical Degradation of Poly(2-Aminoethyl Methacrylate). Polym. Degrad. Stab. 2008, 93 (8), 1460–1466.

https://doi.org/10.1016/j.polymdegradstab.2008.05.013.

(89) Ji, W.; Panus, D.; Palumbo, R. N.; Tang, R.; Wang, C. Poly(2-Aminoethyl Methacrylate) with Well-Defined Chain Length for DNA Vaccine Delivery to Dendritic Cells. Biomacromolecules 2011, 12 (12), 4373–4385.

https://doi.org/10.1021/bm201360v.

(90) Ionov, L.; Synytska, A.; Kaul, E.; Diez, S. Protein-Resistant Polymer Coatings Based on Surface-Adsorbed Poly(Aminoethyl Methacrylate)/Poly(Ethylene Glycol) Copolymers. Biomacromolecules 2010, 11 (1), 233–237.

https://doi.org/10.1021/bm901082y.

(91) Cheng, Q.; Huang, Y.; Zheng, H.; Wei, T.; Zheng, S.; Huo, S.; Wang, X.; Du, Q.; Zhang, X.; Zhang, H.-Y.; et al. The Effect of Guanidinylation of PEGylated Poly(2-Aminoethyl Methacrylate) on the Systemic Delivery of SiRNA.

Biomaterials 2013, 34 (12), 3120–3131.

https://doi.org/10.1016/j.biomaterials.2013.01.043.

(92) Kulkarni, A. D.; Vanjari, Y. H.; Sancheti, K. H.; Patel, H. M.; Belgamwar, V.

S.; Surana, S. J.; Pardeshi, C. V. Polyelectrolyte Complexes: Mechanisms, Critical Experimental Aspects, and Applications. Artif. Cells, Nanomedicine

Biotechnol. 2016, 44 (7), 1615–1625.

https://doi.org/10.3109/21691401.2015.1129624.

(93) Schatz, C.; Lucas, J.-M.; Viton, C.; Domard, A.; Pichot, C.; Delair, T.

Formation and Properties of Positively Charged Colloids Based on Polyelectrolyte Complexes of Biopolymers. Langmuir 2004, 20 (18), 7766–

7778. https://doi.org/10.1021/la049460m.

(94) Montaña, J. A.; Perez, L. D.; Baena, Y. A PH-Responsive Drug Delivery Matrix

(95) Thünemann, A. F.; Müller, M.; Dautzenberg, H.; Joanny, J.-F.; Löwen, H.

Polyelectrolyte Complexes. In Polyelectrolytes with Defined Molecular Architecture II; Springer Berlin Heidelberg, 2004; pp 113–171.

https://doi.org/10.1007/b11350. Hyperthin Polyelectrolyte Multilayers Having Matched and Mismatched Repeat Units. Langmuir 2016, 32 (47), 12332–12337.

https://doi.org/10.1021/acs.langmuir.6b00578.

(98) Petzold, G.; Nebel, A.; Buchhammer, H.-M.; Lunkwitz, K. Preparation and Characterization of Different Polyelectrolyte Complexes and Their Application as Flocculants. Colloid Polym. Sci. 1998, 276 (2), 125–130.

https://doi.org/10.1007/s003960050219.

(99) Rabiee, A. Acrylamide-Based Cationic Polyelectrolytes and Their Potential

(99) Rabiee, A. Acrylamide-Based Cationic Polyelectrolytes and Their Potential