• Ei tuloksia

Abdi, H., Valentin, D., & Edelman, B. (1999). Neural networks. London, California:

Thousand Oaks.

Ahn, J. H., Han, S. P., & Lee, Y. S. (2006). Customer churn analysis: Churn determinants and mediation effects of partial defection in the Korean mobile telecommunications service industry. Telecommunications policy(30(10-11)), 552-568.

Aitkenhead, M. J. (2008). A co-evolving decision tree classification method. Expert Systems with Applications, 34(1), 18-25.

Alpaydin, E. (2009). Introduction to machine learning. UK: MIT press.

Anding, M. (2010). SaaS: a love-hate relationship for enterprise software vendors. In Software-as-a-Service (pp. 43-56). Gabler.

Belharbi, S., Chatelain, C., Herault, R., & Adam, S. (2015). Facial landmark detection using structured output deep neural networks. arXiv preprint arXiv:1504.07550.

Benlian, A., Koufaris, M., & Hess, T. (2012). Service quality in software-as-a-service:

Developing the SaaS-qual measure and examining its role in usage continuance.

Journal of Management Information Systems(28(3)), 85-126.

Bi, W., Cai, M., Liu, M., & Li, G. (2016). A big data clustering algorithm for mitigating the risk of customer churn. IEEE Transactions on Industrial Informatics, 12(3), 1270-1281.

Blattberg, R. C., Malthouse, E. C., & Neslin, S. A. (2009). Customer Lifetime Value:

Empirical Generalizations and Some Conceptual Questions. Journal of Interactive Marketing, 23(2), 157-168.

Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial intelligence(97(1-2)), 245-271.

Boyle, B. H. (2011). Support vector machines: data analysis, machine learning and applications. Nova Science Publishers, Inc.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.

Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Research(164(1)), 252-268.

Burez, J., & Van den Poel, D. (2009). Handling class imbalance in customer churn prediction. Expert Systems with Applications(36(3) ), 4626-4636.

Castanedo, F., Valverde, G., Zaratiegui, J., & Vazquez, A. (2014). Using deep learning to predict customer churn in a mobile telecommunication network.

Chen, D., & Zhao, H. (2012). Data security and privacy protection issues in cloud computing. In 2012 International Conference on Computer Science and Electronics Engineering, Vol 1, 647-651

Chen, Z., Fan, Z., & Sun, M. (2012). A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data.

European Journal of Operational Research, 223(2), 461-472.

Claesen, M., & De Moor, B. (2015). Hyperparameter search in machine learning.

Clemente-Císcar, M., San Matías, S., & Giner-Bosch, V. (2014). A methodology based on profitability criteria for defining the partial defection of customers in non-contractual settings. European Journal of Operational Research, 239(1), 276-285.

Cutler, A., Cutler, D. R., & Stevens, J. R. (2012). Random forests. In C. &. Zhang, Ensemble machine learning: methods and applications (pp. 157-175). Boston, MA: Springer.

Dass, R., & Jain, R. (2011). An Analysis on the factors causing telecom churn: First Findings. AMCIS.

Dawson, A. J., Stasa, H., Roche, M. A., Homer, C. S., & Duffield, C. (2014). Nursing churn and turnover in Australian hospitals: nurses perceptions and suggestions for supportive strategies. BMC nursing, 13(1), 11.

De Bock, K. W., & Poel, D. V. d. (2011). An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction. Expert Systems with Applications, 38(10).

Dropbox. (2019). Dropbox . Retrieved from https://www.dropbox.com/

Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning.

Ertekin, S., Huang, J., & Giles, C. L. (2007). Active learning for class imbalance problem.

SIGIR, 7, 823-824.

Facebook. (2019). Facebook Marketing Partners. Retrieved from https://www.facebook.com/business/marketing-partners

Flach, P. A. (2003). The geometry of ROC space: understanding machine learning metrics through ROC isometrics. Proceedings of the 20th international conference on machine learning (ICML-03), (pp. 194-201).

Flores, J. A. (2011). Focus on artificial neural networks. New York: Nova Science Publishers.

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol.

1, No. 10). New York: Springer series in statistics.

Ge, Y., He, S., Xiong, J., & Brown, D. E. (2017). Customer Churn Analysis for a Software-as-a-service Company. 2017 Systems and Information Engineering Design Symposium (SIEDS) (pp. 106-111). IEEE.

Gerven, M. A. J. v., & Bohte, S. M. (2017). Artificial neural networks as models of neural information processing. Frontiers in Computational Neuroscience, 11, p. 114.

Google. (2019). About Google Docs. Retrieved from

https://www.google.com/docs/about/

Gordini, N., & Veglio, V. (2017). Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry. Industrial Marketing Management, 62, 100-107.

Graves, A. (2012). Supervised sequence labelling with recurrent neural networks.

Hadden, J., Tiwari, A., Roy, R., & Ruta, D. (2006). Churn prediction: Does technology matter. International Journal of Intelligent Technology, 1(2), 104-110.

Harrington, P. (2012). Machine learning in action. Greenwich: Manning.

Heide, J. B., & Weiss, A. M. (1995). Vendor consideration and switching behavior for buyers in high-technology markets. Journal of marketing, 59(3), 30-43.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.

Idris, A., Rizwan, M., & Khan, A. (2012). Churn prediction in telecom using random

forest and PSO based data balancing in combination with various feature selection

strategies. Computers and Electrical Engineering, 38(6), 1808-1819.

Imblearn. (2019). imbalanced-learn. Retrieved from https://imbalanced-learn.readthedocs.io/en/stable/index.html

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic study.

Intelligent Data Analysis(6(5)), 429-449.

Johny, C., & Mathai, P. (2017). Customer churn prediction: A survey. International Journal of Advanced Research in Computer Science(8), 5.

Kamalraj, N., & Malathi, A. (2013). A survey on churn prediction techniques in communication sector. International Journal of Computer Applications, 64 (5), 39-42.

Keaveney, S. M. (1995). Customer switching behavior in service industries: An exploratory study. Journal of marketing(59(2)), 71-82.

Keras.io. (2019). keras.io. Retrieved from https://keras.io/

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering(160), 3-24.

Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine learning, 51(2), 181-207.

Kwon, S. J. (2011). Artificial neural networks. New York: Nova Science Publishers.

Le, Q. V., Ranzato, M. A., Monga, R., Devin, M., Chen, K., Corrado, G. S., ... & Ng, A.

Y. (2011). Building high-level features using large scale unsupervised learning.

arXiv preprint.

Lemaître, G., Nogueira, F., & Aridas, C. K. (2017). Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning. The Journal of Machine Learning Research, 18(1), 559-563.

Liu, C. T., Guo, Y. M., & Lee, C. H. (2010). The effects of relationship quality and switching barriers on customer loyalty. International Journal of Information Management.

Liu, J. W., Chang, J. Y., & Tsai, J. C. (2015). Does Perceived Value Mediate the

Relationship between Service Traits and Client Satisfaction in the

Software-as-a-Service (SaaS)? Open Journal of Social Sciences, 3(7), 159.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. Proc. icml, 30(1), 3.

Marsland, S. (2011). Machine learning: an algorithmic perspective. . Chapman and Hall/CRC.

McDonald, H. (2010). The factors influencing churn rates among season ticket holders:

An empirical analysis. Journal of Sport Management, 24(6), 676-701.

Metz, C. E. (1978). Basic principles of ROC analysis. In Seminars in nuclear medicine.

8, pp. 283-298. WB Saunders.

Mishra, A., & Reddy, U. S. (2017). A Novel Approach for Churn Prediction Using Deep Learning. 2017 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1-4). ICCIC.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &

Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2018). Foundations of machine learning.

MIT press.

Mutanen, T. (2006). Customer churn analysis–a case study. Journal of Product and Brand Management(14(1)), 4-13 .

Polikar, R. (2012). Ensemble learning. In C. &. Zhang, Ensemble machine learning:

methods and applications (pp. 1-34). Boston, MA: Springer.

Pring, B., & Lo, T. (2009). Dataquest insight: SaaS adoption trends in the US and UK Gartner. Stamford, CT.

Provost, F. (2000, July). Machine learning from imbalanced data sets 101. Proceedings of the AAAI’2000 workshop on imbalanced data sets(68), 1-3.

Roos, I., & Friman, M. (2008). Emotional experiences in customer relationships - a telecommunication study. International Journal of Service Industry Management, 19, 281-301.

Saghir, M., Bibi, Z., Bashir, S., & Khan, F. H. (2019). Churn prediction using neural network based individual and ensemble models. 634-639.

Sak, H., Senior, A., & Beaufays, F. (2014). Long short-term memory recurrent neural

network architectures for large scale acoustic modeling. Fifteenth annual

conference of the international speech communication association.

Salesforce. (2019). Salesforce. Retrieved from https://www.salesforce.com/products/what-is-salesforce/#

Schuster, M., & Paliwal, K., K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing, 45(11), 2673-2681.

Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). RUSBoost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans(40(1)), 185-197.

Shaaban, E., Helmy, Y., Khder, A., & Nasr, M. (2012). A proposed churn prediction model. .

Shin, D. H., & Kim, W. Y. (2007). Mobile number portability on customer switching behavior: in the case of the Korean mobile market. Info, 9 (4), 38-54.

Skicit-learn. (2019). skicit-learn. Retrieved from https://scikit-learn.org/stable/

Sukow, A. E., & Grant, R. (2013). Forecasting and the Role of Churn in Software-as-a-Service Business Models. iBusiness(5(01)), 49.

Szucs, G., & Kiss, A. (2013). Churn analysis of a product of application search in mobile platform. Academy of Economic Studies. Economy Informatics, 13(1), 5.

Trofimoff, A., & Walters, G. M. (2002). Examining Churn Drivers. Bernstein Global Wealth Management, 9-11.

Turner, M., Budgen, D., & Brereton, P. (2003). Turning software into a service.

Computer, 36(10), 38-44.

Wackerly, D., Mendenhall, W., & Scheaffer, R. L. (2014). Mathematical statistics with applications. Cengage Learning.

Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A comparison of machine learning techniques for customer churn prediction.

Simulation Modelling Practice and Theory(55), 1-9.

Van Rijsbergen, C. J. (2004). The geometry of information retrieval. Cambridge, UK;New York;: Cambridge University Press.

Wang, L. (2005). Support vector machines: theory and applications. Springer Science &

Business Media.

Waters, B. (2005). Software as a service: A look at the customer benefits. Journal of

Digital Asset Management, 1(1), 32-39.

Wei, C. P., & Chiu, I. T. (2002). Turning telecommunications call details to churn prediction: a data mining approach. Expert systems with applications(23(2)), 103-112.

Weiss, G. M. (2004). Mining with rarity: A unifying framework. SIGKDD Explorations(6(1)), 7–19.

Versichele, M., De Groote, L., Bouuaert, M. C., Neutens, T., Moerman, I., & Van de Weghe, N. (2014). Pattern mining in tourist attraction visits through association rule learning on Bluetooth tracking data: A case study of Ghent, Belgium. Tourism Management, 44, 67-81.

Xia, G. E., & Jin, W. D. (2008). Model of customer churn prediction on support vector machine. Systems Engineering-Theory & Practice, 28(1), 71-77.

Xie, Y., Li, X., Ngai, E. W. T., & Ying, W. (2009). Customer churn prediction using improved balanced random forests. (36(3)), 5445-5449.

Xu, Y., & He, M. (2018). Improved artificial neural network based on intelligent optimization algorithm. Neural Network World, 28(4), 345-360.

Xu, B., Wang, N., Chen, T., & Li, M. (2015). Empirical evaluation of rectified activations in convolutional network. arXiv preprint.

Ying, W., Li, X., Xie, Y., & Johnson, E. (2008). Preventing customer churn by using random forests modeling. IEEE International Conference on Information Reuse and Integration (pp. 429-434). IEEE.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The state of the art. International journal of forecasting, 14(1), 35-62.

Zhang, C., & Ma, Y. (2012). Ensemble machine learning: Methods and applications.

Zhu, B., Baesens, B., & vanden Broucke, S. K. L. M. (2017). An empirical comparison

of techniques for the class imbalance problem in churn prediction. Information

Sciences, 408.