• Ei tuloksia

II. EXPERIMENTAL

11. Bibliography

1. Pawliszyn J. Solid-Phase Microextraction in Perspective.; 2012. doi:10.1016/B978-0-12-416017-0.00001-2

2. Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacl E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions.

Analytical Chemistry. 2018;90(1):302-360. doi:10.1021/acs.analchem.7b04502

3. Helin A, Rönkkö T, Parshintsev J, Hartonen K, Schilling B, Läubli T, Riekkola ML. Solid phase microextraction Arrow for the sampling of volatile amines in wastewater and atmosphere.

Journal of Chromatography A. 2015;1426:56-63. doi:10.1016/j.chroma.2015.11.061 4. Souza-Silva ÉA, Gionfriddo E, Pawliszyn J. A critical review of the state of the art of

solid-phase microextraction of complex matrices II. Food analysis. TrAC - Trends in Analytical Chemistry. 2015;71:236-248. doi:10.1016/j.trac.2015.04.018

5. Kaziur W, Salemi A, Jochmann MA, Schmidt TC. Automated determination of picogram-per-liter level of water taste and odor compounds using solid-phase microextraction arrow coupled with gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry. 2019;411(12):2653-2662. doi:10.1007/s00216-019-01711-7

6. Castro Ó, Trabalón L, Schilling B, Borrull F, Pocurull E. Solid phase microextraction Arrow for the determination of synthetic musk fragrances in fish samples. Journal of Chromatography A. 2019;1591:55-61. doi:10.1016/j.chroma.2019.01.032

7. Smith PA, Sng MT, Eckenrode BA, Leow SY, Koch D, Erickson RP, Lepage CRJ, Hook GL.

Towards smaller and faster gas chromatography-mass spectrometry systems for field chemical detection. Journal of Chromatography A. 2005;1067(1-2):285-294.

doi:10.1016/j.chroma.2004.11.008

8. Pragney D, Vijaya Saradhi UVR. Sample-preparation techniques for the analysis of chemical-warfare agents and related degradation products. TrAC - Trends in Analytical Chemistry.

2012;37:73-82. doi:10.1016/j.trac.2012.03.007

9. Hook GL, Kimm G, Betsinger G, Savage PB, Swift A, Logan T, Smith PA. Solid phase

microextraction sampling and gas chromatography/mass spectrometry for field detection of the chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX). Journal of Separation Science. 2003;26(12-13):1091-1096. doi:10.1002/jssc.200301561 10. Hook GL, Kimm G, Koch D, Savage PB, Ding B, Smith PA. Detection of VX contamination in soil

through solid-phase microextraction sampling and gas chromatography/mass spectrometry of the VX degradation product bis(diisopropylaminoethyl)disulfide. Journal of

Chromatography A. 2003;992(1-2):1-9. doi:10.1016/S0021-9673(03)00278-4

11. Smith PA, Sheely M V., Kluchinsky TA. Solid phase microextraction with analysis by gas chromatography to determine short term hydrogen cyanide concentrations in a field setting.

Journal of Separation Science. 2002;25(14):917-921. doi:10.1002/1615-9314(20021001)25:14<917::AID-JSSC917>3.0.CO;2-F

12. Pan L, Adams M, Pawliszyn J. Determination of fatty acids using solid phase microextraction.

Analytical Chemistry. 1995;67(23):4396-4403. doi:10.1021/ac00119a031

13. Llompart M, Celeiro M, García-Jares C, Dagnac T. Environmental applications of solid-phase microextraction. TrAC Trends in Analytical Chemistry. 2019;112:1-12.

doi:https://doi.org/10.1016/j.trac.2018.12.020

14. VERIFIN. Accessed November 23, 2019. https://www.helsinki.fi/en/verifin-finnish-institute-for-verification-of-the-chemical-weapons-convention

15. Augusto F, Hantao LW, Mogollón NGS, Braga SCGN. New materials and trends in sorbents for solid-phase extraction. TrAC - Trends in Analytical Chemistry. 2013;43:14-23.

doi:10.1016/j.trac.2012.08.012

16. Xu J, Zheng J, Tian J, Zhu F, Zeng F, Su C, Ouyang G. New materials in solid-phase microextraction. TrAC - Trends in Analytical Chemistry. 2013;47:68-83.

doi:10.1016/j.trac.2013.02.012

17. Lakso HÅ, Ng WF. Determination of Chemical Warfare Agents in Natural Water Samples by Solid-Phase Microextraction. Analytical Chemistry. 1997;69(10):1866-1872.

doi:10.1021/ac960997h

18. Hooijschuur EWJ, Kientz CE, Brinkman UAT. Analytical separation techniques for the determination of chemical warfare agents. Journal of Chromatography A. 2002;982(2):177-200. doi:10.1016/S0021-9673(02)01426-7

19. Popiel S, Sankowska M. Determination of chemical warfare agents and related compounds in environmental samples by solid-phase microextraction with gas chromatography. Journal of Chromatography A. 2011;1218(47):8457-8479. doi:10.1016/j.chroma.2011.09.066

20. BGB Analytik Vertrieb GmbH. Accessed June 17, 2019. https://www.bgb-info.com/

21. Popiel S, Nawała J, Czupryński K. Preparation and application of sol-gel acrylate and methacrylate solid-phase microextraction fibres for gas chromatographic analysis of organoarsenic compounds. Analytica Chimica Acta. 2014;837:52-63.

doi:10.1016/j.aca.2014.05.039

22. Schneider JF, Boparai AS, Reed LL. Screening for sarin in air and water by solid-phase microextraction-gas chromatography-mass spectrometry. Journal of Chromatographic Science. 2001;39(10):420-424. doi:10.1093/chromsci/39.10.420

23. Rearden P, Harrington PB. Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME-IMS).

Analytica Chimica Acta. 2005;545(1):13-20. doi:10.1016/j.aca.2005.04.035

24. Song NE, Lee JY, Lee YY, Park JD, Jang HW. Comparison of headspace–SPME and SPME-Arrow–GC–MS methods for the determination of volatile compounds in Korean salt–

fermented fish sauce. Applied Biological Chemistry. 2019;62(1). doi:10.1186/s13765-019-0424-6

25. Vas G, Vékey K. Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. Journal of Mass Spectrometry. 2004;39(3):233-254.

doi:10.1002/jms.606

26. Nawała J, Czupryński K, Popiel S, Dziedzic D, Bełdowski J. Development of the HS-SPME-GC-MS/MS method for analysis of chemical warfare agent and their degradation products in environmental samples. Analytica Chimica Acta. 2016;933:103-116.

doi:10.1016/j.aca.2016.05.033

27. Lord H, Pawliszyn J. Evolution of solid-phase microextraction technology. Journal of Chromatography A. 2000;885(1):153-193. doi:https://doi.org/10.1016/S0021-9673(00)00535-5

28. Olejniczak J, Staniewski J. Enrichment of phenols from water with situ derivatization by in-tube solid phase microextraction-solvent desorption prior to off-line gas chromatographic determination with large-volume injection. Analytica Chimica Acta. 2007;588(1):64-72.

doi:10.1016/j.aca.2007.01.065

29. Kataoka H, Lord HL, Pawliszyn J. Applications of solid-phase microextraction in food analysis.

Journal of Chromatography A. 2000;880(1):35-62. doi:https://doi.org/10.1016/S0021-9673(00)00309-5

30. Hyde AM, Zultanski SL, Waldman JH, Zhong Y-L, Shevlin M, Peng F. General Principles and Strategies for Salting-Out Informed by the Hofmeister Series. Organic Process Research &

Development. 2017;21(9):1355-1370. doi:10.1021/acs.oprd.7b00197

31. Sng MT, Ng WF. In-situ derivatisation of degradation products of chemical warfare agents in water by solid-phase microextraction and gas chromatographic-mass spectrometric analysis.

Journal of Chromatography A. 1999;832(1-2):173-182. doi:10.1016/S0021-9673(98)00990-X 32. SUPELCO. SPME for GC analysis - Getting Started with Solid Phase Microextraction- Sigma

Aldrich. Supelco Analytical Products. Published 2018. Accessed February 28, 2020.

https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/General_Information/1/spme-gc-brochure.pdf

33. Lievers R, Groot AT. Disposable polydimethylsiloxane (PDMS)-coated fused silica optical fibers for sampling pheromones of moths. PLoS ONE. 2016;11(8):1-15.

doi:10.1371/journal.pone.0161138

34. Barreira LMF, Duporté G, Rönkkö T, Parshintsev J, Hartonen K, Hyrsky L, Heikkinen E, Jussila M, Kulmala M, Riekkola ML. Field measurements of biogenic volatile organic compounds in the atmosphere using solid-phase microextraction Arrow. Atmospheric Measurement Techniques. 2018;11(2):881-893. doi:10.5194/amt-11-881-2018

35. Hou X, Wang L, Guo Y. Recent Developments in Solid-phase Microextraction Coatings for Environmental and Biological Analysis. Chemistry Letters. 2017;46(10):1444-1455.

doi:10.1246/cl.170366

36. Kimm GL, Hook GL, Smith PA. Application of headspace solid-phase microextraction and gas chromatography-mass spectrometry for detection of the chemical warfare agent bis(2-chloroethyl) sulfide in soil. Journal of Chromatography A. 2002;971(1-2):185-191.

doi:10.1016/S0021-9673(02)00999-8

37. Emmons R V, Liden T, Schug KA, Gionfriddo E. Optimization of thin film solid phase microextraction and data deconvolution methods for accurate characterization of organic compounds in produced water. Journal of Separation Science. 2020;43(9-10):1915-1924.

doi:10.1002/jssc.201901330

38. Larsdotter-Mellström H, Murtazina R, Borg-Karlson AK, Wiklund C. Timing of Male Sex Pheromone Biosynthesis in a Butterfly - Different Dynamics under Direct or Diapause Development. Journal of Chemical Ecology. 2012;38(5):584-591. doi:10.1007/s10886-012-0126-6

39. Llompart M, Sanchez-Prado L, Pablo Lamas J, Garcia-Jares C, Roca E, Dagnac T. Hazardous organic chemicals in rubber recycled tire playgrounds and pavers. Chemosphere.

2013;90(2):423-431. doi:https://doi.org/10.1016/j.chemosphere.2012.07.053

40. Andersson J, Borg-Karlson A-K, Vongvanich N, Wiklund C. Male sex pheromone release and female mate choice in a butterfly. Journal of Experimental Biology. 2007;210(6):964-970.

doi:10.1242/jeb.02726

41. PAL-SPME Arrow. The Better SPME. PAL-System. Published 2016. Accessed February 20, 2020.

https://www.palsystem.com/fileadmin/public/docs/Downloads/Brochures/PAL_SPME_Arro w_Broschuere_Rev6_Spreads.pdf

42. Kremser A, Jochmann MA, Schmidt TC. PAL SPME Arrow - Evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Analytical and Bioanalytical Chemistry. 2016;408(3):943-952. doi:10.1007/s00216-015-9187-z

43. Baltussen E, Sandra P, David F, Cramers C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. Journal of Microcolumn Separations. 1999;11(10):737-747. doi:doi:10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4

44. Genck WJ. Make the most of most of antisolvent crystallization. Chemical Processing.

2010;73:21-25.

45. Thermal Desorption Unit TDU 2. Accessed September 3, 2020.

http://www.gerstel.com/en/thermal-desorption-unit.htm

46. Althoff MA, Bertsch A, Metzulat M, Klapötke TM, Karaghiosoff KL. Application of headspace and direct immersion solid-phase microextraction in the analysis of organothiophosphates related to the Chemical Weapons Convention from water and complex matrices. Talanta.

2017;174(May):295-300. doi:10.1016/j.talanta.2017.05.024

47. D’Agostino* PA, Chenier CL. Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass

spectrometry. Rapid Communications in Mass Spectrometry. Published online 2007:4065-4072. doi:10.1002/rcm

48. Harvey SD, Nelson DA, Wright BW, Grate JW. Selective stationary phase for solid-phase microextraction analysis of sarin (GB). Journal of Chromatography A. 2002;954(1-2):217-225.

doi:10.1016/S0021-9673(02)00188-7

49. D’Agostino* PA, Chenier CL, Hancock JR, Lepage CRJ. Desorption electrospray ionisation mass spectrometric analysis of chemical warfare agents from solid-phase microextraction fiber.

Rapid Communications in Mass Spectrometry. Published online 2007:4065-4072.

doi:10.1002/rcm

50. Tomkins BA, Sega GA, Ho CH. Determination of Lewisite oxide in soil using solid-phase microextraction followed by gas chromatography with flame photometric or mass spectrometric detection. Journal of Chromatography A. 2001;909(1):13-28.

doi:10.1016/S0021-9673(00)00796-2

51. Szostek B, Aldstadt JH. Determination of organoarsenicals in the environment by solidphase microextraction-gas chromatography-mass spectrometry. Journal of Chromatography A.

1998;807(2):253-263. doi:10.1016/S0021-9673(98)00080-6

52. Celeiro M, Dagnac T, Llompart M. Determination of priority and other hazardous substances in football fields of synthetic turf by gas chromatography-mass spectrometry: A health and environmental concern. Chemosphere. 2018;195:201-211.

doi:https://doi.org/10.1016/j.chemosphere.2017.12.063

53. Silva ÉAS, Lopez-Avila V, Pawliszyn J. Fast and robust direct immersion solid phase

microextraction coupled with gas chromatography-time-of-flight mass spectrometry method

employing a matrix compatible fiber for determination of triazole fungicides in fruits. Journal of Chromatography A. 2013;1313:139-146. doi:10.1016/j.chroma.2013.07.071

54. Wang HL, Geertsema H, van Nieukerken EJ, Löfstedt C. Identification of the Female-Produced Sex Pheromone of the Leafminer Holocacista capensis Infesting Grapevine in South Africa.

Journal of Chemical Ecology. 2015;41(8):724-731. doi:10.1007/s10886-015-0611-9 55. Nieberding CM, de Vos H, Schneider M V., Lassance JM, Estramil N, Andersson J, Bång J,

Hedenström E, Löfstedt C, Brakefield PM. The male sex pheromone of the butterfly Bicyclus anynana: Towards an evolutionary analysis. PLoS ONE. 2008;3(7):1-12.

doi:10.1371/journal.pone.0002751

56. 19 ga. Custodion CME Sampling Device. Accessed November 23, 2019.

https://www.perkinelmer.com/product/custodion-cme-syringe-19-ga-with-1-ext-ntsc19snb191