• Ei tuloksia

Arthroscopic near infrared spectroscopy

Arthroscopic NIRS was found to be highly suitable for in vivo evaluation of car-tilage and underlying bone properties as the technique is non-destructive and al-lows evaluation of the tissue properties without sample preparation. For success-ful adaptation, substantial amount of training data must be collected to establish well-generalized models. Previousin vivostudies [6, 19, 47–49] utilizing NIRS spec-troscopy have evaluated cartilage properties by simply calculating the ratio of two spectral peaks. This parameter has been correlated with various cartilage quali-ties, such as cartilage biomechanical properties and ICRS score, to evaluate cartilage condition. This simplistic approach is highly limited and does not account for the overlapping spectral features in the NIR absorption spectra, therefore highlighting the necessity and importance of multivariate techniques. In studyIV, arthroscopic NIRS probe was introduced forin vivo arthroscopies to evaluate cartilage and un-derlying bone properties in Shetland ponies undergoing cartilage repair procedure.

The ANN models, optimized by variable selection, accurately predicted cartilage and bone properties fromin vitrospectral measurements; however, relatively weaker correlations were observed with predictions based on in vivo NIR measurements.

The relatively weaker prediction accuracy ofin vivoNIR measurements is arguably due to imperfect contact between NIR probe and cartilage surface. To enhance the

identification of optimal spectra for each measurement location, additional indica-tors or classification algorithms, e.g., support vector machines and decision trees, could be utilized.

8 SUMMARY AND CONCLUSIONS

In this thesis, the feasibility of NIRS technique for arthroscopic evaluation of articu-lar cartilage and subchondral bone properties was investigated. In addition, repro-ducibility of scoring of cartilage lesion severity was studied with several techniques, including conventional arthroscope, ultrasound and OCT imaging, and automatic scoring of OCT images. Also, the combined potential of NIRS and OCT for diag-nostics of cartilage degeneration was investigated.

The main conclusion of this thesis can be summarized as follows:

• Quantitative ultrasound and OCT imaging provided valuable complementary information over conventional arthroscope, e.g., enabling visualization of tis-sues underlying cartilage surface. OCT imaging combined with the auto-mated scoring algorithm provided the most reliable scoring of lesion severity.

However, for human cartilage, utilization of ultrasound to determine cartilage thickness is advised due to the limited penetration depth of OCT.

• NIR absorption spectra (700–1050 nm) enabled reliable prediction of cartilage biomechanical properties and composition using PLS regression and ANN methods, respectively. However, this spectral region may have contributions from the subchondral bone due wavelength-dependence of light penetration into and through articular cartilage. Additionally, adaptation of a wider spec-tral region could have enhanced the predictions.

• Automated scoring of cartilage lesion severity based on OCT images enabled creation of subgroups for ANN modeling. Prediction performance of the ANN models based on these subgroups was superior when compared to a general-ized ANN model and, thus, demonstrates the combined potential of NIRS and OCT.

• A novel steam-sterilizable and robust arthroscopic NIRS probe was developed and introduced for determining properties of articular cartilage and subchon-dral bone in vivo. The NIRS technique and probe were found promising for arthroscopic evaluation when utilizing the spectral region of 400–1900 nm.

BIBLIOGRAPHY

[1] J. A. Buckwalter and H. J. Mankin, “Articular cartilage: tissue design and chondrocyte-matrix interactions.,” Instructional course lectures47, 477–86 (1998).

[2] V. C. Mow, A. Ratcliffe, and A. R. Poole, “Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures.,”Biomaterials13, 67–97 (1992).

[3] J. A. Buckwalter and J. Martin, “Degenerative joint disease.,”Clinical symposia (Summit, N.J. : 1957)47, 1–32 (1995).

[4] J. A. Buckwalter and T. D. Brown, “Joint injury, repair, and remodeling: roles in post-traumatic osteoarthritis.,”Clinical orthopaedics and related research7–16 (2004).

[5] J. A. Buckwalter and H. J. Mankin, “Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation.,” Instructional course lectures47, 487–504 (1998).

[6] G. O. Hofmann, J. Marticke, R. Grossstück, M. Hoffmann, M. Lange, H. K.

Plettenberg, R. Braunschweig, O. Schilling, I. Kaden, and G. Spahn, “Detection and evaluation of initial cartilage pathology in man: A comparison between MRT, arthroscopy and near-infrared spectroscopy (NIR) in their relation to initial knee pain,”Pathophysiology17, 1–8 (2010).

[7] S. Amin, M. P. LaValley, A. Guermazi, M. Grigoryan, D. J. Hunter, M. Clancy, J. Niu, D. R. Gale, and D. T. Felson, “The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis.,”Arthritis and rheumatism52, 3152–9 (2005).

[8] L. V. von Engelhardt, M. Lahner, A. Klussmann, B. Bouillon, A. Dàvid, P. Haage, and T. K. Lichtinger, “Arthroscopy vs. MRI for a detailed assess-ment of cartilage disease in osteoarthritis: diagnostic value of MRI in clinical practice.,”BMC musculoskeletal disorders11, 75 (2010).

[9] B. Friemert, Y. Oberländer, W. Schwarz, H. J. Häberle, W. Bähren, H. Gern-gross, and B. Danz, “Diagnosis of chondral lesions of the knee joint: can MRI replace arthroscopy? A prospective study.,”Knee surgery, sports traumatology, arthroscopy : official journal of the ESSKA12, 58–64 (2004).

[10] M. Brittberg and C. S. Winalski, “Evaluation of cartilage injuries and repair.,”

The Journal of bone and joint surgery. American volume85-A Suppl, 58–69 (2003).

[11] R. Outerbridge, “The etiology of chondromalacia patellae.,”The Journal of bone and joint surgery. British volume43-B, 752–757 (1961).

[12] M. Dougados, X. Ayral, V. Listrat, A. Gueguen, J. Bahuaud, P. Beaufils, J. A.

Beguin, J. P. Bonvarlet, T. Boyer, and H. Coudane, “The SFA system for as-sessing articular cartilage lesions at arthroscopy of the knee.,”Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy As-sociation of North America and the International Arthroscopy AsAs-sociation10, 69–77 (1994).

[13] G. Spahn, H. M. Klinger, and G. O. Hofmann, “How valid is the arthroscopic diagnosis of cartilage lesions? Results of an opinion survey among highly experienced arthroscopic surgeons.,”Archives of orthopaedic and trauma surgery 129, 1117–1121 (2009).

[14] G. Spahn, H. M. Klinger, M. Baums, U. Pinkepank, and G. O. Hofmann,

“Reliability in arthroscopic grading of cartilage lesions: results of a prospec-tive blinded study for evaluation of inter-observer reliability.,”Archives of or-thopaedic and trauma surgery131, 377–381 (2011).

[15] B. H. Brismar, T. Wredmark, T. Movin, J. Leandersson, and O. Svensson,

“Observer reliability in the arthroscopic classification of osteoarthritis of the knee.,”The Journal of bone and joint surgery. British volume84, 42–47 (2002).

[16] X. Li, S. Martin, C. Pitris, R. Ghanta, D. L. Stamper, M. Harman, J. G. Fujimoto, and M. E. Brezinski, “High-resolution optical coherence tomographic imag-ing of osteoarthritic cartilage durimag-ing open knee surgery.,”Arthritis research &

therapy7, 318–323 (2005).

[17] J. Liukkonen, J. Hirvasniemi, A. Joukainen, P. Penttilä, T. Virén, S. Saarakkala, H. Kröger, J. S. Jurvelin, and J. Töyräs, “Arthroscopic ultrasound technique for simultaneous quantitative assessment of articular cartilage and subchondral bone: an in vitro and in vivo feasibility study.,”Ultrasound in medicine & biology 39, 1460–1468 (2013).

[18] J. K. Marticke, A. Hösselbarth, K. L. Hoffmeier, I. Marintschev, S. Otto, M. Lange, H. K. W. Plettenberg, G. Spahn, and G. O. Hofmann, “How do visual, spectroscopic and biomechanical changes of cartilage correlate in osteoarthritic knee joints?,” Clinical biomechanics (Bristol, Avon) 25, 332–340 (2010).

[19] G. Spahn, G. Felmet, and G. O. Hofmann, “Traumatic and degenerative car-tilage lesions: arthroscopic differentiation using near-infrared spectroscopy (NIRS).,”Archives of orthopaedic and trauma surgery133, 997–1002 (2013).

[20] C. R. Chu, A. Williams, D. Tolliver, C. K. Kwoh, S. Bruno, and J. J. Irrgang,

“Clinical optical coherence tomography of early articular cartilage degener-ation in patients with degenerative meniscal tears,”Arthritis and Rheumatism 62, 1412–1420 (2010).

[21] C. M. McGoverin, A. Hanifi, U. P. Palukuru, F. Yousefi, P. B. M. Glenn, M. Shockley, R. G. Spencer, and N. Pleshko, “Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy,”Annals of Biomedical Engineering44, 680–692 (2016).

[22] J. K. Sarin, L. Rieppo, H. Brommer, I. O. Afara, S. Saarakkala, and J. Töyräs,

“Combination of optical coherence tomography and near infrared spec-troscopy enhances determination of articular cartilage composition and struc-ture,”Scientific Reports7, 10586 (2017).

[23] T. Niemelä, T. Virén, J. Liukkonen, D. Argüelles, N. C. R. te Moller, P. H.

Puhakka, J. S. Jurvelin, R.-M. Tulamo, and J. Töyräs, “Application of optical coherence tomography enhances reproducibility of arthroscopic evaluation of equine joints.,”Acta veterinaria Scandinavica56, 3 (2014).

[24] J. Puhakka, I. O. Afara, T. Paatela, M. J. Sormaala, M. A. Timonen, T. Virén, J. S. Jurvelin, J. Töyräs, and I. Kiviranta, “In Vivo Evaluation of the Potential of High-Frequency Ultrasound for Arthroscopic Examination of the Shoulder Joint,”Cartilage7, 248–255 (2016).

[25] A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints,”Physics in Medicine and Biology49, 1147–1163 (2004).

[26] D. Chamberland, Y. Jiang, and X. Wang, “Optical imaging: New tools for arthritis,”Integrative Biology2, 496–509 (2010).

[27] X. Ayral, “Diagnostic and quantitative arthroscopy: quantitative arthroscopy.,”

Baillière’s clinical rheumatology10, 477–94 (1996).

[28] X. Ayral, A. Gueguen, R. W. Ike, J. P. Bonvarlet, L. Frizziero, K. Kalunian, L. W.

Moreland, S. Myers, K. S. O’Rourke, H. Roos, R. Altman, and M. Dougados,

“Inter-observer reliability of the arthroscopic quantification of chondropathy of the knee.,”Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 6, 160–6 (1998).

[29] S. P. Oakley and M. N. Lassere, “A critical appraisal of quantitative arthroscopy as an outcome measure in osteoarthritis of the knee.,”Seminars in arthritis and rheumatism33, 83–105 (2003).

[30] G. Spahn, H. Plettenberg, H. Nagel, E. Kahl, H. M. Klinger, T. Mückley, M. Günther, G. O. Hofmann, and J. A. Mollenhauer, “Evaluation of carti-lage defects with near-infrared spectroscopy (NIR): an ex vivo study.,”Medical engineering & physics30, 285–92 (2008).

[31] I. O. Afara, I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede, “Non-destructive evaluation of articular cartilage defects using near-infrared (NIR) spectroscopy in osteoarthritic rat models and its direct relation to Mankin score.,” Osteoarthritis and cartilage / OARS, Osteoarthritis Research Society 20, 1367–73 (2012).

[32] I. O. Afara, I. Prasadam, R. Crawford, Y. Xiao, and A. Oloyede, “Near in-frared (NIR) absorption spectra correlates with subchondral bone micro-CT parameters in osteoarthritic rat models.,”Bone53, 350–7 (2013).

[33] I. O. Afara, S. Singh, and A. Oloyede, “Application of near infrared (NIR) spectroscopy for determining the thickness of articular cartilage.,”Medical en-gineering & physics35, 88–95 (2013).

[34] I. O. Afara, S. Singh, and A. Oloyede, “Load-unloading response of intact and artificially degraded articular cartilage correlated with near infrared (NIR) absorption spectra.,”Journal of the mechanical behavior of biomedical materials20, 249–58 (2013).

[35] M. V. Padalkar, R. G. Spencer, and N. Pleshko, “Near infrared spectroscopic evaluation of water in hyaline cartilage.,”Annals of biomedical engineering41, 2426–36 (2013).

[36] S. T. Stumpfe, J. K. Pester, S. Steinert, I. Marintschev, H. Plettenberg, M. Aurich, and G. O. Hofmann, “Is there a correlation between biophotonical, biochem-ical, histologbiochem-ical, and visual changes in the cartilage of osteoarthritic knee-joints?,”Muscles, ligaments and tendons journal3, 157–65 (2013).

[37] I. O. Afara, I. Prasadam, H. Moody, R. Crawford, Y. Xiao, and A. Oloyede,

“Near infrared spectroscopy for rapid determination of Mankin score compo-nents: a potential tool for quantitative characterization of articular cartilage at surgery.,” Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association30, 1146–55 (2014).

[38] U. P. Palukuru, C. M. McGoverin, and N. Pleshko, “Assessment of hyaline cartilage matrix composition using near infrared spectroscopy,”Matrix Biology 38, 3–11 (2014).

[39] C. M. McGoverin, K. Lewis, X. Yang, M. P. G. Bostrom, and N. Pleshko, “The Contribution of Bone and Cartilage to the Near-Infrared Spectrum of Osteo-chondral Tissue,”Applied Spectroscopy68, 1168–1175 (2014).

[40] I. O. Afara, H. Moody, S. Singh, I. Prasadam, and A. Oloyede, “Spatial map-ping of proteoglycan content in articular cartilage using near-infrared (NIR) spectroscopy.,”Biomedical optics express6, 144–54 (2015).

[41] I. O. Afara, M. Hauta-Kasari, J. S. Jurvelin, A. Oloyede, and J. Töyräs, “Optical absorption spectra of human articular cartilage correlate with biomechanical properties, histological score and biochemical composition,”Physiological Mea-surement36, 1913–1928 (2015).

[42] M. V. Padalkar and N. Pleshko, “Wavelength-dependent penetration depth of near infrared radiation into cartilage.,”The Analyst140, 2093–100 (2015).

[43] I. O. Afara, S. Singh, H. Moody, L. Zhang, and A. Oloyede, “Characterization of Articular Cartilage Recovery and Its Correlation with Optical Response in the Near-Infrared Spectral Range,”Cartilage8, 307–316 (2017).

[44] I. O. Afara, I. Prasadam, Z. Arabshahi, Y. Xiao, and A. Oloyede, “Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy,” Scientific Reports7, 11463 (2017).

[45] D. Baykal, O. Irrechukwu, P.-C. Lin, K. Fritton, R. G. Spencer, and N. Pleshko,

“Nondestructive assessment of engineered cartilage constructs using near-infrared spectroscopy.,”Applied spectroscopy64, 1160–6 (2010).

[46] A. Hanifi, U. Palukuru, C. McGoverin, M. Shockley, E. Frank, A. Grodzinsky, R. G. Spencer, and N. Pleshko, “Near infrared spectroscopic assessment of de-veloping engineered tissues: correlations with compositional and mechanical properties,”The Analyst142, 1320–1332 (2017).

[47] G. Spahn, H. Plettenberg, E. Kahl, H. M. Klinger, T. Mückley, and G. O.

Hofmann, “Near-infrared (NIR) spectroscopy. A new method for arthro-scopic evaluation of low grade degenerated cartilage lesions. Results of a pilot study.,”BMC musculoskeletal disorders8, 47 (2007).

[48] G. Spahn, H. M. Klinger, M. Baums, M. Hoffmann, H. Plettenberg, A. Kroker, and G. O. Hofmann, “Near-infrared spectroscopy for arthroscopic evaluation of cartilage lesions: results of a blinded, prospective, interobserver study.,”

The American journal of sports medicine38, 2516–21 (2010).

[49] G. Spahn, H. Plettenberg, M. Hoffmann, H.-T. Klemm, C. Brochhausen-Delius, and G. O. Hofmann, “The frequency of cartilage lesions in non-injured knees with symptomatic meniscus tears: results from an arthroscopic and NIR-(near-infrared) spectroscopic investigation,”Archives of Orthopaedic and Trauma Surgery137, 837–844 (2017).

[50] J. Malda, J. C. de Grauw, K. E. M. Benders, M. J. L. Kik, C. H. A. van de Lest, L. B. Creemers, W. J. A. Dhert, and P. R. van Weeren, “Of Mice, Men and Elephants: The Relation between Articular Cartilage Thickness and Body Mass,”PLoS ONE8, e57683 (2013).

[51] J. Malda, K. E. M. Benders, T. J. Klein, J. C. de Grauw, M. J. L. Kik, D. W.

Hutmacher, D. B. F. Saris, P. R. van Weeren, and W. J. A. Dhert, “Comparative study of depth-dependent characteristics of equine and human osteochondral tissue from the medial and lateral femoral condyles.,”Osteoarthritis and carti-lage / OARS, Osteoarthritis Research Society20, 1147–51 (2012).

[52] A. J. Sophia Fox, A. Bedi, and S. A. Rodeo, “The basic science of articular cartilage: structure, composition, and function.,”Sports health1, 461–8 (2009).

[53] I. Haq, E. Murphy, and J. Dacre, “Osteoarthritis.,”Postgraduate medical journal 79, 377–83 (2003).

[54] J. A. Buckwalter and J. A. Martin, “Osteoarthritis.,” Advanced drug delivery reviews58, 150–67 (2006).

[55] A. C. Hall, E. R. Horwitz, and R. J. Wilkins, “The cellular physiology of articular cartilage.,”Experimental physiology81, 535–45 (1996).

[56] V. C. Mow, C. C. Wang, and C. T. Hung, “The extracellular matrix, intersti-tial fluid and ions as a mechanical signal transducer in articular cartilage,”

Osteoarthritis and Cartilage7, 41–58 (1999).

[57] P. Julkunen, P. Kiviranta, W. Wilson, J. S. Jurvelin, and R. K. Korhonen, “Char-acterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model,” Journal of Biomechanics 40, 1862–1870 (2007).

[58] Y. Xia, J. B. Moody, H. Alhadlaq, and J. Hu, “Imaging the physical and mor-phological properties of a multi-zone young articular cartilage at microscopic resolution,”Journal of Magnetic Resonance Imaging17, 365–374 (2003).

[59] R. K. Korhonen, M. S. Laasanen, J. Töyräs, R. Lappalainen, H. J. Helminen, and J. S. Jurvelin, “Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage.,”Journal of biomechanics36, 1373–9 (2003).

[60] D. B. Burr and M. A. Gallant, “Bone remodelling in osteoarthritis,” Nature Reviews Rheumatology8, 665–673 (2012).

[61] J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, and R. Recker, “Bone biology.

II: Formation, form, modeling, remodeling, and regulation of cell function.,”

Instructional course lectures45, 387–99 (1996).

[62] N. Reznikov, R. Shahar, and S. Weiner, “Bone hierarchical structure in three dimensions,”Acta Biomaterialia10, 3815–3826 (2014).

[63] J. A. Buckwalter, M. J. Glimcher, R. R. Cooper, and R. Recker, “Bone biology. I:

Structure, blood supply, cells, matrix, and mineralization.,”Instructional course lectures45, 371–86 (1996).

[64] A. Hoshino and W. A. Wallace, “Impact-absorbing properties of the human knee,”Journal of Bone & Joint Surgery, British Volume69-B, 807–811 (1987).

[65] D. Burr, “The contribution of the organic matrix to bone’s material properties,”

Bone31, 8–11 (2002).

[66] M. J. Olszta, X. Cheng, S. S. Jee, R. Kumar, Y. Y. Kim, M. J. Kaufman, E. P. Dou-glas, and L. B. Gower, “Bone structure and formation: A new perspective,”

Materials Science and Engineering R: Reports58, 77–116 (2007).

[67] C. E. Tye, G. K. Hunter, and H. A. Goldberg, “Identification of the type I collagen-binding domain of bone sialoprotein and characterization of the mechanism of interaction,” Journal of Biological Chemistry 280, 13487–13492 (2005).

[68] M. Granke, M. D. Does, and J. S. Nyman, “The Role of Water Compartments in the Material Properties of Cortical Bone,” Calcified Tissue International97, 292–307 (2015).

[69] Y. Wang, S. Von Euw, F. M. Fernandes, S. Cassaignon, M. Selmane, G. Laurent, G. Pehau-Arnaudet, C. Coelho, L. Bonhomme-Coury, M. M. Giraud-Guille, F. Babonneau, T. Azaïs, and N. Nassif, “Water-mediated structuring of bone apatite,”Nature Materials12, 1144–1153 (2013).

[70] D. J. Hunter, D. Schofield, and E. Callander, “The individual and socioeco-nomic impact of osteoarthritis,”Nature Reviews Rheumatology10, 437–41 (2014).

[71] C. R. Chu, A. A. Williams, C. H. Coyle, and M. E. Bowers, “Early diagnosis to enable early treatment of pre-osteoarthritis.,”Arthritis research & therapy14, 212 (2012).

[72] B. E. Gage, N. M. McIlvain, C. L. Collins, S. K. Fields, and R. D. Comstock,

“Epidemiology of 6.6 million knee injuries presenting to United States emer-gency departments from 1999 through 2008,”Academic Emergency Medicine19, 378–385 (2012).

[73] A. C. Gelber, “Joint Injury in Young Adults and Risk for Subsequent Knee and Hip Osteoarthritis,”Annals of Internal Medicine133, 321 (2000).

[74] T. D. Brown, R. C. Johnston, C. L. Saltzman, J. L. Marsh, and J. A. Buckwalter,

“Posttraumatic Osteoarthritis: A First Estimate of Incidence, Prevalence, and Burden of Disease,”Journal of Orthopaedic Trauma20, 739–744 (2006).

[75] W. Widuchowski, J. Widuchowski, B. Koczy, and K. Szyluk, “Untreated asymptomatic deep cartilage lesions associated with anterior cruciate liga-ment injury: results at 10- and 15-year follow-up,” The American Journal of Sports Medicine37, 688–692 (2009).

[76] R. Kijowski, D. G. Blankenbaker, P. T. Stanton, J. P. Fine, and A. A. De Smet,

“Radiographic findings of osteoarthritis versus arthroscopic findings of artic-ular cartilage degeneration in the tibiofemoral joint.,”Radiology239, 818–824 (2006).

[77] K. D. Brandt, R. S. Fife, E. M. Braunstein, and B. Katz, “Radiographic grading of the severity of knee osteoarthritis: relation of the Kellgren and Lawrence grade to a grade based on joint space narrowing, and correlation with arthro-scopic evidence of articular cartilage degeneration.,”Arthritis and rheumatism 34, 1381–6 (1991).

[78] R. S. Fife, K. D. Brandt, E. M. Braunstein, B. P. Katz, K. D. Shelbourne, L. A.

Kalasinski, and S. Ryan, “Relationship between arthroscopic evidence of car-tilage damage and radiographic evidence of joint space narrowing in early osteoarthritis of the knee,”Arthritis & Rheumatism34, 377–382 (1991).

[79] J. H. Kellgren and J. S. Lawrence, “Radiological Assessment of Osteo-Arthrosis,”Annals of the Rheumatic Diseases16, 494–502 (1957).

[80] H. T. Kokkonen, A. S. Aula, H. Kröger, J.-S. Suomalainen, E. Lammentausta, E. Mervaala, J. S. Jurvelin, and J. Töyräs, “Delayed Computed Tomography Arthrography of Human Knee Cartilage In Vivo,”Cartilage3, 334–341 (2012).

[81] N. M. Azer, C. S. Winalski, and T. Minas, “MR imaging for surgical plan-ning and postoperative assessment in early osteoarthritis,”Radiologic Clinics of North America42, 43–60 (2004).

[82] G. E. Gold, B. A. Hargreaves, K. J. Stevens, and C. F. Beaulieu, “Advanced Magnetic Resonance Imaging of Articular Cartilage,” Orthopedic Clinics of North America37, 331–347 (2006).

[83] J. Podlipská, A. Guermazi, P. Lehenkari, J. Niinimäki, F. W. Roemer, J. P.

Arokoski, P. Kaukinen, E. Liukkonen, E. Lammentausta, M. T. Nieminen, O. Tervonen, J. M. Koski, and S. Saarakkala, “Comparison of Diagnostic Per-formance of Semi-Quantitative Knee Ultrasound and Knee Radiography with MRI: Oulu Knee Osteoarthritis Study,”Scientific Reports6, 22365 (2016).

[84] T. Virén, Y. P. Huang, S. Saarakkala, H. Pulkkinen, V. Tiitu, A. Linjama, I. Kivi-ranta, M. J. Lammi, A. Brünott, H. Brommer, R. V. Weeren, P. A. J. Brama, Y. P. Zheng, J. S. Jurvelin, and J. Töyräs, “Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spon-taneously repaired horse cartilage,”Journal of Medical Engineering & Technology 36, 185–192 (2012).

[85] N. te Moller, H. Brommer, J. Liukkonen, T. Virén, M. Timonen, P. Puhakka, J. Jurvelin, P. van Weeren, and J. Töyräs, “Arthroscopic optical coherence tomography provides detailed information on articular cartilage lesions in horses,”The Veterinary Journal197, 589–595 (2013).

[86] P. Puhakka, N. te Moller, I. Afara, J. Mäkelä, V. Tiitu, R. Korhonen, H. Brom-mer, T. Virén, J. Jurvelin, and J. Töyräs, “Estimation of articular cartilage properties using multivariate analysis of optical coherence tomography sig-nal,”Osteoarthritis and Cartilage23, 2206–2213 (2015).

[87] T. Lyyra, J. Jurvelin, P. Pitkänen, U. Väätäinen, and I. Kiviranta, “Indenta-tion instrument for the measurement of cartilage stiffness under arthroscopic control.,”Medical engineering & physics17, 395–399 (1995).

[88] H. Brommer, M. S. Laasanen, P. A. J. Brama, P. R. Van Weeren, H. J. Helminen, and J. S. Jurvelin, “In Situ and Ex Vivo Evaluation of an Arthroscopic Inden-tation Instrument to Estimate the Health Status of Articular Cartilage in the Equine Metacarpophalangeal Joint,”Veterinary Surgery35, 259–266 (2006).

[89] W. C. Bae, M. M. Temple, D. Amiel, R. D. Coutts, G. G. Niederauer, and R. L.

Sah, “Indentation Testing of Human Cartilage: Sensitivity to Articular Surface Degeneration,”Arthritis and Rheumatism48, 3382–3394 (2003).

[90] S. Sim, A. Chevrier, M. Garon, E. Quenneville, A. Yaroshinsky, C. D. Hoe-mann, and M. D. BuschHoe-mann, “Non-destructive electromechanical assess-ment (Arthro-BST) of human articular cartilage correlates with histological scores and biomechanical properties,”Osteoarthritis and Cartilage22, 1926–1935 (2014).

[91] B. A. Lakin, B. D. Snyder, and M. W. Grinstaff, “Assessing Cartilage Biome-chanical Properties: Techniques for Evaluating the Functional Performance of Cartilage in Health and Disease,”Annu. Rev. Biomed. Eng19, 27–55 (2017).

[92] P. W. P. W. Atkins and J. De Paula, “Elements of physical chemistry,” (2009).

[93] Z. Movasaghi, S. Rehman, and I. U. Rehman, “Fourier transform infrared (FTIR) spectroscopy of biological tissues,”Applied Spectroscopy Reviews43, 134–

179 (2008).

[94] L. Rieppo, H. T. Kokkonen, K. A. M. Kulmala, V. Kovanen, M. J. Lammi, J. Töyräs, and S. Saarakkala, “Infrared microspectroscopic determination of collagen cross-links in articular cartilage,” Journal of Biomedical Optics 22, 035007 (2017).

[95] B. H. Stuart, “Infrared Spectroscopy: Fundamentals and Applications,” (2004).

[96] D. A. Burns and E. W. Ciurczak, “Handbook of near-infrared analysis, 3rd ed.,” (2009).

[97] A. C. Mutlu, I. H. Boyaci, H. E. Genis, R. Ozturk, N. Basaran-Akgul, T. Sanal, and A. K. Evlice, “Prediction of wheat quality parameters using near-infrared spectroscopy and artificial neural networks,”European Food Research and Tech-nology233, 267–274 (2011).

[98] W. Che, L. Sun, Q. Zhang, D. Zhang, D. Ye, W. Tan, L. Wang, and C. Dai, “Ap-plication of Visible/Near-Infrared Spectroscopy in the Prediction of Azodicar-bonamide in Wheat Flour,”Journal of Food Science82, 2516–2525 (2017).

[99] J. Ala-Myllymäki, J. T. Honkanen, J. Töyräs, and I. O. Afara, “Optical spectro-scopic determination of human meniscus composition,”Journal of Orthopaedic Research34, 270–278 (2016).

[100] W. Groh, “Overtone absorption in macromolecules for polymer optical fibers,”

Die Makromolekulare Chemie189, 2861–2874 (1988).

[101] C. L. Pekeris, “The rotation-vibration coupling in diatomic molecules,” Physi-cal Review45, 98–103 (1934).

[102] Beer, “Bestimmung der Absorption des rothen Lichts in farbigen Flüs-sigkeiten,”Annalen der Physik162, 78–88 (1852).

[103] Å. Rinnan, F. van den Berg, and S. B. Engelsen, “Review of the most common pre-processing techniques for near-infrared spectra,”TrAC Trends in Analytical Chemistry28, 1201–1222 (2009).

[104] P. Geladi, D. MacDougall, and H. Martens, “Correction for Near-Infrared Reflectance Spectra of Meat,”Applied Spectroscopy39, 491–500 (1985).

[105] R. J. Barnes, M. S. Dhanoa, and S. J. Lister, “Standard normal variate transfor-mation and de-trending of near-infrared diffuse reflectance spectra,” Applied Spectroscopy43, 772–777 (1989).

[106] M. R. Whitbeck, “Second Derivative Infrared Spectroscopy,” Applied Spec-troscopy35, 93–95 (1981).

[107] C. D. Brown, L. Vega-Montoto, and P. D. Wentzell, “Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration,”Applied Spectroscopy54, 1055–1068 (2000).

[108] A. Savitzky and M. J. Golay, “Smoothing and Differentiation of Data by Sim-plified Least Squares Procedures,”Analytical Chemistry36, 1627–1639 (1964).

[109] S. Wold, M. Sjöström, and L. Eriksson, “PLS-regression: a basic tool of chemo-metrics,”Chemometrics and Intelligent Laboratory Systems58, 109–130 (2001).

[110] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,”Nature323, 533–536 (1986).

[111] D. W. Marquardt, “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,”Journal of the Society for Industrial and Applied Mathematics11, 431–

441 (1963).

[112] H. Yu and B. M. Wilamowski, “Levenberg-Marquardt training,” inIndustrial Electronics Handbook, vol. 5 – Intelligent Systems(CRC Press, 2011), pp. 12–1 to 12–18.

[113] K. Gustafson, “Assigning Initial Weights in Feedforward Neural Networks,”

[113] K. Gustafson, “Assigning Initial Weights in Feedforward Neural Networks,”