• Ei tuloksia

ACCEPTED MANUSCRIPT

575

Daebeler, A., Abell, G.C.J., Bodelier, P.L.E., Bodrossy, L., Frampton, D.M.F., Hefting, M.M., Laanbroek, 576

H.J., 2012. Archaeal dominated ammonia-oxidizing communities in Icelandic grassland soils are moderately 577

affected by long-term N fertilization and geothermal heating. Frontiers in Microbiology 3, 352 doi:

578

10.3389/fmicb.2012.00352.

579 580

Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. BMC Bioinformatics 26, 581

2460-2461.

582

Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and 583

speed of chimera detection. BMC Bioinformatics 27, 2194-2200 doi: 10.1093/bioinformatics/btr381.

584

Gil, J., Pérez, T., Boering, K., Martikainen, P.J., Biasi, C., 2017. Mechanisms responsible for high N2O 585

emissions from subarctic permafrost peatlands studied via stable isotope techniques. Global Biogeochemical 586

Cycles 31, 172–189, doi:10.1002/ 2015GB005370.

587 588

Gil, J., 2017. Microbial processes responsible for the high N2O emissions from sub-Arctic permafrost 589

peatlands and tropical soils as determined by stable isotopes approaches. Dissertations in Forestry and 590

Natural Sciences, University of Eastern Finland. Grano, Kuopio, Finland. ISBN: 978-952-61-2693-7 (PDF) 591

592

Graef, C., Hestnes, A.G., Svenning, M.M., Frenzel, P., 2011. The active methanotrophic community in a 593

wetland from the high Arctic. Environmental Microbiology Reports 3, 466-472.

594 595

Gubry-Rangin, C., Hai, B., Quince, C., Engel, M., Thomson, B.C., James, P., Schloter, M., Griffiths, R.I., 596

Prosser, J.I., Nicol, G.W., 2011. Niche specialization of terrestrial archaeal ammonia oxidizers. Proceedings 597

of National Academy of Sciences of USA 108, 21206-21211.

598 599

Herrmann, M., Hädrich, A., Küsel, K., 2012. Predominance of thaumarchaeal ammonia oxidizer abundance 600

and transcriptional activity in an acidic fen. Environmental Microbiology 14, 3013–3025 doi:10.1111/j.1462-601

understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews 2015;

605

39, 729-749. doi: 10.1093/femsre/fuv021.

606 607

Hink, L., Gubry-Rangin, C., Nicol, G.W., Prosser, J.I., 2018. The consequences of niche and physiological 608

differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions. ISME Journal 12, 609

impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission 613

pathways, in the context of strengthening the global response to the threat of climate change, sustainable 614

development, and efforts to eradicate poverty [V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J.

615

Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y.

616

Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]. World 617

Meteorological Organization, Geneva, Switzerland, 32 pp.

618 619

Isobe, K., Ikutani, J., Fang, Y., Yoh, M., Mo, J., Suwa, Y., Yoshida, M., Senoo, K., Otsuka, S., Koba, K., 620

2018. Highly abundant acidophilic ammonia-oxidizing archaea causes high rates of nitrification and nitrate 621

leaching in in nitrogen-saturated forest soils. Soil Biology and Biochemistry 122, 220-227.

622

Inselsbacher, E., Cambui, C.A., Richter, A., Stange, C.F., Mercier, H., Wanek, W., 2007. Microbial activities 623

and foliar uptake of nitrogen in the epiphytic bromeliad Vriesea gigantea. New Phytologist 175, 311–320.

624

M AN US CR IP T

AC CE PT ED

ACCEPTED MANUSCRIPT

Jia, Z., Conrad, R., 2009. Bacteria rather than Archaea dominate microbial ammonia oxidation in an 625

agricultural soil. Environmental Microbiology 11, 1658-1671.

626 627

Jung, M.Y., Kim, J.G., Sinninghe Damste, J.S., Rijpstra, I.C., Madsen, E.L., Kim, S.J., Hong, H., Si, O.J., 628

Kerou, M., Schleper, C., Rhee, S.K., 2016. hydrophobic ammonia-oxidizing archaeon of the 629

Nitrosocosmicus clade isolated from coal tar-contaminated sediment. Environmental Microbiology Reports 630

8, 983-992.

631 632

Kanakidou, M., Myriokefalitakis, S., Daskalakisa, N., Fanourgakis, G., 2016. Past, Present, and Future 633

Atmospheric Nitrogen Deposition. Journal of Atmospheric Sciences 73, 2039-2047.

634

Kaverin, D.A., Pastukhov, A.V., Lapteva, E.M., Biasi, C., Marushchak, M., Martikainen, P., 2016.

635

Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol’shezemel’skaya 636

tundra. Eurasian Soil Science 49: 498–511.

637 638

van Kessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J.M., Kartal, B, Jetten, 639

M.S.M., Lücker, S., 2015. Complete nitrification by a single microorganism. Nature 528, 555–559.

640 641

Kits, K.D., Sedlacek, C.J., Lebedeva, E.V., Han, P., Bulaev, A., Pjevac, P., Daebeler, A., Romano, S., 642

Albertsen, M., Stein, L.Y., Daims, H., Wagner, M. 2017. Kinetic analysis of a complete nitrifier reveals an 643

oligotrophic lifestyle. Nature 549, 269-272.

644 645

Kozlowski, J.A., Stieglmeier, M., Schleper, C., Klotz, M.G., Stein, L.Y., 2016. Pathways and key 646

intermediates required for obligate aerobic ammonia-dependent chemolithotrophy in bacteria and 647

Thaumarchaeota. ISME Journal 10, 1836-1845.

648 649

Lamb, E., Han, S., Lanoil, B.D., Henry, G.R., Brummell, M.E., Banerjee, S., 2011. A high Arctic soil 650

ecosystem resists long-term environmental manipulations. Global Change Biology 17, 3187–3194.

651 652

Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G.W., Prosser, J.I., Schuster, S.C., Schleper, 653

C., 2006. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806-809.

654 655

Lehtovirta-Morley, L.E., Verhamme, D.T., Nicol, G.W., Prosser, J.I., 2013. Effect of nitrification inhibitors 656

on the growth and activity of Nitrosotalea devanaterra in culture and soil. Soil Biology and Biochemistry 657

62, 129-133.

658 659

Ma, W.K., Schautz, A., Fishback, L.A.E., Bedard-Haughn, A., Farrell, R.E., Siciliano, S.D., 2007. Assessing 660

the potential of ammonia oxidizing bacteria to produce nitrous oxide in soils of a high arctic lowland 661

ecosystem on Devon Island, Canada. Soil Biology and Biochemistry 39, 2001–2013.

662 663

Martikainen, P.J., Nykänen, H., Crill, P., Silvola, J., 1993. Effect of a lowered water-table on nitrous-oxide 664

fluxes from northern peatlands. Nature 366, 51-53. doi: 10.1038/366051a0.

665 666

Marushchak, M.E., Pitkämäki, A., Koponen, H., Biasi, C., Seppälä, M., Martikainen, P.J., 2011. Hot spots for 667

nitrous oxide emissions found in different types of permafrost peatlands. Global Change Biology 17, 2601-668

2614.

669 670

Maljanen, M., Sigurdsson, B.D., Guðmundsson, J., Óskarsson, H., Huttunen, J.T., Martikainen, P.J., 2010.

671

Greenhouse gas balances of managed peatlands in the Nordic countries - present knowledge and gaps.

672

Biogeosciences 7, 2711-2738.

673 674

M AN US CR IP T

AC CE PT ED

ACCEPTED MANUSCRIPT

Mettel, C., Kim, Y., Shrestha, P.M., Liesack, W. 2010. Extraction of mRNA from soil. Applied and 675

Environmental Microbiology 76, 5996-6000.

676 677

Mussmann, M., Brito, I., Pitcher, A., Sinnighe Damste, J.S., Hatzenpichler, R., Richter, A., Nielsen, J.L., 678

Nielsen, P.H., Müller, A., Daims, H., Wagner, M., Head, I.M., 2011. Thaumarchaeotes abundant in refinery 679

nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proceedings of National 680

Academy of Sciences of USA 108, 16771–16776.

681 682

Myhre, G.G.D, Shindell, F.M., Bréon, W., Collins, J., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.F., 683

Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., Zhang, H., 2013.

684

Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013 The Physical Science Basis, edited 685

by: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley 686

PM, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on 687

Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

688

Nemergut, D.R., Townsend, A.R., Sattin, S.R., Freeman, K.R., Fierer, N., Neff, J.C., Bowman, W.D., 689

Schadt, C.W., Weintraub, M.N., Schmidt, S.K., 2008. The effects of chronic nitrogen fertilization on alpine 690

tundra soil microbial communities: implications for carbon and nitrogen cycling. Environmental 691

Microbiology 10, 3093–3105.

692

Neuwirth, E., 2014. RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. https://CRAN.R-693

project.org/package=RColorBrewer.

694

Nykänen, H., Alm, J., Lang, K., Silvola, J., Martikainen, P.J., 1995. Emissions of CH4, N2O and CO2 from a 695

virgil fen and a fen drained for grassland in Finland. Journal of Biogeography 22, 351-357.

696

van Lent, J., Hergoualc’h, K., Verchot, L.V., 2015. Reviews and syntheses: Soil N2O and NO emissions 697

from land use and land-use change in the tropics and subtropics: a meta-analysis. Biogeosciences 12, 7299-698

7313.

699 700

Ludwig, B., Teepe, R., de Gerenyu, V.L., Flessa, H., 2006. CO2 and N2O emissions from gleyic soils in the 701

Russian tundra and a German forest during freeze-thaw periods – a microcosm study. Soil Biology and 702

Biochemistry 38, 3516–3519.

703

Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn D, Minchin, P.R., 704

O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2018. vegan:

705

Community Ecology Package. R package version 2.4-6. https://CRAN.R-project.org/package=vegan1.

706

Pag`es, H., Aboyoun, P., Gentleman, R., DebRoy, S., 2017. Biostrings: Efficient manipulation of biological 707

strings. R package version 2.46.0.

708

Palmer, K., Biasi, C., Horn, M.A., 2012. Contrasting denitrifier communities relate to contrasting N2O 709

emission patterns from acidic peat soils in arctic tundra. ISME Journal 6, 1058 –1077.

710

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2018. nlme: Linear and Nonlinear Mixed 711

Effects Models. R package version 3.1-131.1, https://CRAN.R-project.org/package=nlme.

712

Prosser, J.I., Nicol, G.W., 2012. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche 713

specialisation and differentiation. Trends in Microbiology 20, 523-531.

714

Pärn J, Verhoeva JTA, Butterbach-Bahl K, Dise NB, Ullah S, Aasa A, Egorov, S., Espenber, M., Järveoja, J., 715

Jauhiainen, J., Kasak, K., Klemedtsson, L., Kull, A., Laggoun-Défarge, F., Lapshina, E.D., Lohila A., 716

Lõhmus, K., Maddison, M., Mitsch, W.J., Müller, C., Niinimets, Ü., Osborne, B., Pae, T., Salm, J.O., 717

Sgouridis, F., Sohar, K., Soosaar, K., Storey, K., Teemusk, A., Tenywa, M.M., Tournebize, J., Truu, J., Veber, 718

M AN US CR IP T

AC CE PT ED

ACCEPTED MANUSCRIPT

G,. Villa, J.A., Sann Zaw, S., Mander, Ü., 2018. Nitrogen-rich organic soils under warm well- drained 719

conditions are global nitrous oxide emission hotspots. Nature Communications 9, 1135 doi: 10.1038/s41467-720

018-03540-1.

721

Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous oxide(N2O): the dominant ozone-depleting 722

substance emitted in the 21st century. Science 326, 123–125.

723 724

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical 725

Computing, Vienna, Austria. 2018; URL https://www.R-project.org/ . 726

727

Reay, D.S., Dentener, F., Smith, P., Grace, J., Feely, R.A., 2008. Global nitrogen deposition and carbon sinks.

728

Nature Geosciences 1, 430–437.

729 730

Repo, M.E., Susiluoto, S., Lind, S.E., Jokinen, S., Elsakov, V., Biasi C, Virtanen, T., Martikainen, P.J., 2009.

731

Large N2O emissions from cryoturbated peat soil in tundra. Nature Geoscience 2, 189-192.

732 733

Rodionow, A., Flessa, H., Kazansky, O., Guggenberger, G., 2006. Organic matter composition and potential 734

trace gas production of permafrost soils in the forest tundra in northern Siberia. Geoderma 135, 49–62.

735 736

Sauder, L.A., Albertsen, M., Engel, K., Schwarz, J., Nielsen, P.H., Wagner, M., Neufeld, J.D., 2017.

737

Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon 738

from a municipal wastewater
treatment system. ISME Journal 11, 1142-1157.

739

Schaeffer, S. M., Sharp, E., Schimel, J.P., Welker, J.M., 2013. Soil-plant N processes in a High Arctic 740

ecosystem, NW Greenland are altered by long-term experimental warming and higher rainfall. Global 741

Change Biology, 19, 3529–3539, doi:10.1111/gcb.12318.

742

Seppälä, M., 2003. Surface abrasion of palsas by wind action in Finnish Lapland. Geomorphology 52, 141–

743

oxidising archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidising bacterium Nitrosospira 748

multiformis to nitrification inhibitors. FEMS Microbiology Letters 344, 121-129.

749 750

Siciliano, S.D., Ma, W.K., Ferguson, S., Farrell, R.E., 2009. Nitrifier dominance of Arctic soil nitrous oxide 751

emissions arises due to fungal competition with denitrifiers for nitrate. Soil Biology and Biochemistry 41, 752

1104–1110.

753 754

Stieglmeier, M., Mooshammer, M., Kitzler, B., Wanek, W., Zechmeister-Boltenstern, S., Richter A, Schleper, 755

C., 2013. Aerobic nitrous oxide production through N-nitrosating hybrid formation in ammonia-oxidizing 756

archaea. ISME Journal 8, 1135-1146.

757 758

Stopnisek, N., Gubry-Rangin, C., Höfferle, S., Nicol, G.W., Mandic-Mulec, I., Prosser, J.I., 2010.

759

Thaumarchaeal ammonia ocidation in an acidic forest peat soil is not influenced by ammonia amendment.

760

Applied and Environmental Microbiology 76, 7626-7634.

761 762

Takakai, F., Desyatkin, A.R., Lopez, C.M.L., Fedorov, A.N., Desyatkin, R.V., Hatano, R., 2008. CH4 and 763

N2O emissions from a forest-alas ecosystem in the permafrost taiga forest region, eastern Siberia, Russia.

764

Journal of Geophysical Research: Biogeosciences 113, G02002, doi: 10.1029/2007JG000521.

765 766

Voigt, C., Lamprecht, R.E., Marushchak, M.E., Lind, S.E., Novakovskiy, A., Aurela, M., Martikainen, P.J., 767

Biasi, C., 2017a. Warming of subarctic tundra increases emissions of all three important greenhouse gases - 768

carbon dioxide, methane and nitrous oxide. Global Change Biology 23, 3121–3138, doi: 10.1111/gcb.13563.

769 770

M AN US CR IP T

AC CE PT ED

ACCEPTED MANUSCRIPT

Voigt, C., Marushchak, M.E., Lamprecht, R.E., Jackowicz-Korczynski, M., Lindgren, A., Mastepanov, M., 771

Granlund, L., Christensen, T.R., Tahvanainen, T., Martikainen, P.J., Biasi, C., 2017b. Increased nitrous oxide 772

emissions from Arctic peatlands after permafrost thaw. Proceedings of National Academy of Sciences of 773

USA 114, 6238-6243.

774

Wickham, H., 2018. stringr: Simple, Consistent Wrappers for Common String Operations. R package version 775

1.3.0. https://CRAN.R-project.org/package=stringr.

776

Wickham, H., 2007. Reshaping Data with the reshape Package. Journal of Statistical Software 21, 1-20. URL 777

http://www.jstatsoft.org/v21/i12/.

778

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, USA.

779

Wild, B., Schnecker, J., Knoltsch, A., Takriti, M., Mooshammer, M., Gentsch, N., Mikutta, R., Eloy Alves, 780

R.J., 2015. Microbial nitrogen dynamics in organic and mineral soil horizons along a latitudinal transect in 781

western Siberia. Global Biogeochemical Cycles 29, 567–582, doi:10.1002/ 2015GB005084.

782

Zhu, X., Burger, M., Doane, T.A., Horwath, W.R., 2013 Ammonia oxidation pathways and nitrifier 783

denitrification are significant sources of N2O and NO under low oxygen availability. Proceedings of National 784

Academy of Sciences of USA 110, 6328-6333.

785 786

Zhu-Barker, X., Cavazos, A.R., Ostrom, N.E., Horwath, W.R., Glass, J.B., 2015. The importance of abiotic 787

reactions nitrous oxide production. Biochemistry 126, 251-267.

788 789 790 791 792 793 794 795 796

Figure legends:

797 798

Figure 1. Characterization of the study The geographical sites. Geographical location A), soil N2O 799

fluxes B), soil NO3

content C), and abundance of archaeal amoA genes D). Mean (N = 3) ± 800

standard error is shown. Significant differences in Student’s two-tailed t-test between bare and 801

vegetated surfaces are shown (# P < 0.10, * P < 0.05, ** P < 0.01; *** P < 0.001). T-values, 802

degrees of freedom and Ns of each comparison are shown in Tables S2-S4.

803 804 805

Figure 2. Diversity and absolute abundance of AOA clades in bare and vegetated peat surface soils.

806

Phylogenetic placement and relative abundance of the dominant AOA clades in bare and vegetated 807

surfaces based on amoA genes A). Absolute abundance of the dominant AOA clades in bare and 808

vegetated surfaces based on amoA genes, calculated by multiplying their relative abundance by total 809

M AN US CR IP T

AC CE PT ED

ACCEPTED MANUSCRIPT

AOA abundance measured by qPCR of amoA genes (Fig. 1 D) B). Fold-difference between AOA 810

clades NS-gamma (NS-γ) and NS-zeta (NS-ζ) C). Mean ± standard error is shown. Significant 811

differences in Student’s t-test between AOA clades at each study sites are indicated by asterisks (*

812

P < 0.05, ** P < 0.01). T-values, degrees of freedom and N of each comparison are shown in Table 813

S5. AOA clades below detection are indicated by the symbol #.

814 815 816

Figure. 3. Gross nitrification rates in Seida bare peat soil after 30 days of incubation experiments at 817

+13°C with nitrification inhibitors carboxy-PTIO (inhibiting AOA) and ATU (inhibiting 818

betaproteobacterial AOB and comammox Nitrospira) A). Mean (N = 3) ± standard error is shown.

819

Significant differences in Student’s two-tailed t-test between control and treatment are shown with 820

letters (P < 0.01). Transcription of amoA genes after the 30 days incubation B). Mean (N = 3) ± 821

standard error is shown. Significant differences in Student’s two-tailed t-test between control and 822

treatment are indicated by letters (P < 0.05). Levels of significance are indicated by asterisks (* P <

823

0.05, ** P < 0.01, *** P < 0.001). T- values, and degrees of freedom of each comparison are shown 824

in Table S7.

825 826 827

Table 1. Comparison between daily mean N2O emissions from bare and vegetated 828

arctic peat surfaces in this study and emissions measured in previous studies from 829

similar bare and vegetated arctic peat soils.

830 831 832

M AN US CR IP T

AC CE PT ED

ACCEPTED MANUSCRIPT

Table 1. Comparison of daily mean N2O fluxes (µg N2O m-2 h-1) from bare and vegetated surfaces in this study to fluxes in previous studies on bare and vegetated arctic peat sites.

Landform type Site: Measurement period n Duration (d) Mean SE Reference:

Bare peat plateau Seida, Vorkuta, Russia August 2011 3 1 29.52 17.86 This study

Vegetated peat plateau Seida, Vorkuta, Russia August 2011 3 1 2.10 1.80 This study

Bare palsas Kevo, Finland June 2016 3 1 5.90 2.22 This study

Bare palsas Taymyr, Russia August 2011 3 1 42.20 16.64 This study

Vegetated palsas Kevo, Finland June 2016 3 1 -1.54 0.43 This study

Vegetated palsas Taymyr, Russia August 2011 3 1 6.93 5.10 This study

Bare peat plateau Seida, Vorkuta, Russia June-September 2012 (Snow-free period) 5 118 6.67 1.67 Voigt, et al., 201711 Bare peat plateau Seida, Vorkuta, Russia June-September 2013 (Snow-free period) 5 118 31.25 7.92 Voigt, et al., 201711 Vegetated peat plateau Seida, Vorkuta, Russia June-September 2012 (Snow-free period) 5 118 0.00 0.42 Voigt, et al., 201711 Vegetated peat plateau Seida, Vorkuta, Russia June-September 2013 (Snow-free period) 5 118 0.83 0.42 Voigt, et al., 201711

Bare palsas Kevo, Finland August 2009 21 1 108.33 3.90 Marushchak, et al. 201110

Vegetated palsas Kevo, Finland August 2009 6 1 8.33 0.00 Marushchak, et al. 201110

M AN US CR IP T

AC CE PT ED

ACCEPTED MANUSCRIPT

0.1

Ca. N. arcticus Kfb

(KX863714)

Ca. N. oleophilus MY3

(CP012850)

NS- ζ _OTU4

(KF179420)

NS- α

(Nitrososphaera)

NS- ζ _OTU1

(FJ227156)

NS- β

NS-IS-1

NS- ζ _OTU5

(KM110745)

NS- γ -2.2 NS- γ -2.1

NS- γ -2.3_OTU1

(HM113517)

NS- γ -1

NS- γ -2.3.1

NS- γ -2.3_OTU2

(KC962894)

NS- γ -2.3.IS

NS- γ -2.3.2

NS- ζ -2

NS- ζ _OTU3

(KF179412)

NS- ε

NS- ζ -1.2 NS- ζ -1.1

NS- ζ -IS.1

LIITTYVÄT TIEDOSTOT