• Ei tuloksia

Fabrication and characterization of self-assembled glassy plasmonic nanostructures

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Fabrication and characterization of self-assembled glassy plasmonic nanostructures"

Copied!
67
0
0

Kokoteksti

(1)

uef.fi

PUBLICATIONS OF

THE UNIVERSITY OF EASTERN FINLAND Dissertations in Forestry and Natural Sciences

Dissertations in Forestry and Natural Sciences

DISSERTATIONS | JUHA-MATTI HUUSKO | FABRICATION AND CHARACTERIZATION OF... | No 293

SEMYON CHERVINSKII

FABRICATION AND CHARACTERIZATION OF SELF- ASSEMBLED PUBLICATIONS OF

THE UNIVERSITY OF EASTERN FINLAND

This Thesis is dedicated to the investigation of the optical and morphological properties

of silver nanostructures, which are self- assembled on the surface or in the volume

of ion-exchanged glass. The technique for two-dimensional self-arrangement of silver nanoislands on the glass surface was developed. Two approaches to the modification

of the resonant properties of nanoparticles were studied. It was also demonstrated that silver nanoisland films can be used in surface-

enhanced Raman spectroscopy.

SEMYON CHERVINSKII

(2)
(3)

             

FABRICATION  AND   CHARACTERIZATION  OF   SELF-­ASSEMBLED  GLASSY   PLASMONIC  NANOSTRUCTURES  

   

(4)

 

 

 

(5)

Semyon  Chervinskii  

FABRICATION  AND   CHARACTERIZATION  OF   SELF-­ASSEMBLED  GLASSY   PLASMONIC  NANOSTRUCTURES  

 

Publications  of  the  University  of  Eastern  Finland   Dissertations  in  Forestry  and  Natural  Sciences    

 No  293    

University  of  Eastern  Finland   Joensuu  

2017    

Academic  Dissertation  

To  be  presented  by  permission  of  the  Faculty  of  Science  and  Forestry   for  public  examination  in  the  Auditorium  AG100  in  Agora  Building  at   the  University  of  Eastern  Finland,  Joensuu,  on  December  8,  2017,  at  12  

o’clock  noon.  

 

(6)

                       

    Grano  Oy   Jyväskylä,  2017  

Editors:  Pertti  Pasanen,  Matti  Vornanen,   Jukka  Tuomela,  Matti  Tedre  

Distribution:  University  of  Eastern  Finland  Library  /  Sales  of   publications  

P.O.Box  107,  FI-­‐‑80101  Joensuu,  Finland   tel.  +358-­‐‑50-­‐‑3058396  

www.uef.fi/kirjasto   ISBN:  978-­‐‑952-­‐‑61-­‐‑2673-­‐‑9  (nid.)   ISBN:  978-­‐‑952-­‐‑61-­‐‑2674-­‐‑6  (PDF)  

ISSNL:  1798-­‐‑5668   ISSN:  1798-­‐‑5668   ISSN:  1798-­‐‑5676  (PDF)  

(7)

Author’s  address:        Semyon  Chervinskii   University  of  Eastern  Finland  

Department  of  Physics  and  Mathematics   P.O.Box  111  

80100  JOENSUU  FINLAND   email:  semen.chervinskii@uef.fi    

Supervisors:          Professor  Yuri  Svirko   University  of  Eastern  Finland  

Department  of  Physics  and  Mathematics   P.O.Box  111  

80100  JOENSUU  FINLAND   email:  yuri.svirko@uef.fi    

Professor  Seppo  Honkanen   University  of  Eastern  Finland  

Department  of  Physics  and  Mathematics   P.O.Box  111  

80100  JOENSUU  FINLAND   email:  seppo.honkanen@uef.fi    

Professor  Andrey  Lipovskii   St.  Petersburg  Academic  University   Department  of  Physics  and  Technology  of   Nanoheterostructures,  

194021  ST.  PETERSBURG  RUSSIA   email:  lipovsky@spbau.ru    

Reviewers:          Professor  Zhipei  Sun   Aalto  University  

Department  of  Electronics  and  Nanoengineering   Tietotie  3  

02150  ESPOO  FINLAND   email:  zhipei.sun@aalto.fi  

  Senior  scientist  Vladimir  G.  Melekhin  

Ioffe  Institute  of  Russian  Academy  of  Science   Centre  of  Nanoheterostructure  Physics   26  Politekhnicheskaya  

194021  ST.  PETERSBURG  RUSSIA   email:  melvol@hv.ioffe.rssi.ru  

(8)

 

Opponent:          Professor  Amin  Abdolvand   University  of  Dundee  

School  of  Science  and  Engineering   Harris  Bldg.  1.3  

DD1  4HN  DUNDEE  SCOTLAND,  UK   email:  a.abdolvand@dundee.ac.uk

(9)

Chervinskii,  Semyon  

Fabrication  and  characterization  of  self-­‐‑assembled  glassy  plasmonic  nanostructures.  

Joensuu:  University  of  Eastern  Finland,  2017   Publications  of  the  University  of  Eastern  Finland   Dissertations  in  Forestry  and  Natural  Sciences  2017;  293   ISBN:  978-­‐‑952-­‐‑61-­‐‑2673-­‐‑9  (print)  

ISSNL:  1798-­‐‑5668   ISSN:  1798-­‐‑5668  

ISBN:  978-­‐‑952-­‐‑61-­‐‑2674-­‐‑6  (PDF)   ISSN:  1798-­‐‑5676  (PDF)    

 

ABSTRACT  

 

This   Thesis   is   dedicated   to   the   investigation   of   the   optical   and   morphological   properties  of  silver  nanostructures,  self-­‐‑assembled  on  the  surface  or  in  the  volume  of   ion-­‐‑exchanged  glass.  

The  structures  were  fabricated  by  enriching  the  subsurface  layer  of  the  soda-­‐‑lime   glass  with  silver  ions  using  ion-­‐‑exchange  in  AgxNa1-­‐‑xNO3  (x  =  0.01–  0.15)  melt.  The   followed  annealing  in  hydrogen  resulted  in  formation  of  silver  nanoparticles  on  the   surface   and   (after   a   longer   annealing   time)   in   the   subsurface   layer   of   the   silver-­‐‑

enriched  glass.  

The  most  important  result  of  this  Thesis  is  the  development  of  a  technique  for   two-­‐‑dimensional  self-­‐‑arrangement  of  silver  nanoislands.  In  order  to  achieve  this,  the   silver  ions  were  redistributed  within  the  subsurface  layer  through  thermal  poling  of   the  glass  with  a  profiled  anodic  electrode.  By  varying  the  shape  and  periodicity  of   the   electrode,   and   the   mode   of   the   processing,   it   was   possible   to   control   the   nanoislands’   size   and   to   combine   them   in   groups.   This   opens   a   way   to   create   plasmonic  molecules  on  the  glass  surface  composed  of  one,  two,  three,  or  even  more   nanoparticles  that  are  self-­‐‑arranged  in  the  prescribed  fashion.  

Another  remarkable  result  is  the  reshaping  of  the  nanoparticles  in  the  subsurface   layer  under  irradiation  with  femtosecond  optical  pulses.  The  transformation  of  the   nanoparticles’   shape   from   spherical   to   spheroidal   drastically   affected   the   optical   properties  of  the  glass-­‐‑metal  nanocomposite.  The  model  of  this  composite  was  built;  

this  allowed  to  reveal  the  dependence  of  the  modified  nanoparticles’  aspect  ratio  on   the  laser  processing  conditions.  

The   optical   properties   of   silver   nanoisland   films   on   the   glass   surface   were   modified  by  coating  them  with  a  highly  refractive  amorphous  TiO2  film.  The  coating   red-­‐‑shifted   the   surface   plasmon   resonance   wavelength   providing   also   additional   protection  of  the  nanoislands  from  the  environment.  The  observed  enhancement  of   the  Raman  signal  from  the  molecules  deposited  on  the  silver  nanoisland  films  creates   opportunities  to  use  them  in  surface-­‐‑enhanced  Raman  spectroscopy.  

 

(10)

ii    

543.422.3,  543.424.2  

CAB  Thesaurus:  surface  plasmons,  nanotechnology,  ion  exchange,  poling,  optics,  photonics,   silver,  nanoparticles  

 

(11)

 

ACKNOWLEDGEMENTS    

I  would  like  to  express  my  sincere  gratitude  to  my  supervisors  Prof.  Yuri  Svirko,   Prof.  Seppo  Honkanen,  and  Prof.  Andrey  Lipovskii  for  their  guidance  in  my  PhD   studies  as  well  as  in  non-­‐‑work-­‐‑related  matters.  I  consider  myself  extremely  lucky  to   have  so  many  advisers  with  different  expertise,  because  there  was  always  somebody   to  ask.  

I  wish  to  acknowledge  the  everlasting  support  in  the  experiments  from  Dr.  Pertti   Pääkkönen,  Dr.  Janne  Laukkonen,  and  Dr.  Tommi  Itkonen.  Their  ability  to  explain   obvious  things  patiently  and  difficult  ones  simply,  which  allowed  me  to  learn  a  lot   about   performing   experiments   inside   and   outside   the   cleanroom,   while   their   constant  efforts  on  better  organization  of  these  experiments  and  on  the  equipment   maintenance   made   this   experience   just   great.   The   equally   continuous   support   in   administrative  and  organizational  matters  from  Mrs.  Hannele  Karppinen,  Mrs.  Katri   Mustonen,   Dr.   Noora   Heikkilä,   and   Mrs.   Marita   Ratilainen   can   also   not   be   underestimated.  Being  myself  not  the  most  accurate  and  organized  person,  I  greatly   appreciate  the  help  of  this  team  of  our  Department.    To  not  forget  Mr.  Timo  Vahimaa   who,  through  his  ‘invisible’  help  with  IT,  literally  connected  me  with  all  the  above   mentioned.  I  am  thankful  to  the  Prof.  Seppo  Honkanen  and  Prof.  Timo  Jääskeläinen,   who  led  our  team  as  the  Head  of  the  Department  of  Physics  and  Mathematics  during   my   time   here   and   who   granted   me   the   opportunity   to   work   in   such   a   nice   environment.  

I  would  also  like  to  thank  all  my  colleagues,  who  helped  me  in  my  studies  as  well   as  in  basic  practical  matters.  First  of  all,  I  would  like  to  mention  the  nanocarbon-­‐‑team   which  welcomed  me  to  join  both  working  and  non-­‐‑working  activities  from  my  first   day  on,  and  from  whom  I  learned  a  lot  about  everyday  life  at  the  University  and   outside   –   Dr.   Mikhail   Petrov,   Dr.   Tommi   Kaplas,   Dr.   Petr   Obraztsov,   and   Dr.  

Vyatcheslav   Vanyukov.   I   greatly   appreciate   the   gang   of   former   and   current   PhD   students  whose  company  I  enjoyed  during  my  years  here,  it  is  impossible  to  list  all,   but  I  would  like  to  mention  at  least  Dr.  Feruza  Tuyakova,  Mr.  Salman  Daniel,  Mr.  

Dmitrii  Klyukin,  Mr.  Lutful  Ahad,  and  Mr.  Sergey  Malykhin.  I  am  thankful  to  Dr.  

Olga  Svirko  for  the  help  with  the  thin  film  depositions,  to  Dr.  Victor  Prokofiev  for   the  interesting  stories  not  only  about  experiments,  and  to  Dr.  Niko  Penttinen  for  the   introduction  in  ellipsometry.  I  would  like  to  separately  greet  Dr.  Antti  Matikainen,   with  whom  we  started  very  fruitful  studies  on  Raman  scattering  and  who  taught  me   how  to  operate  ALD.  And  most  of  all  I  would  like  to  acknowledge  this  cheerful  guy   with  whom  I  started  my  research  as  an  undergraduate,  who  contributed  to  most  of   my   results   and   made   it   funnier   both   inside   and   outside   the   University,   Mr.   Igor   Reduto.  

I   treasure   the   opportunities   of   collaboration   in   many   laboratories,   it   greatly   enhanced  the  variety  and  quality  of  my  results  and  improved  my  competence.  I  am   thankful   to   the   group   at   the   University   of   Southampton,   headed   by   Prof.   Peter  

(12)

 iv  

the  opportunity  to  gain  my  knowledge  about  the  laser  modification.  I  am  grateful  to   the  group  of  Prof.  Martti  Kauranen  at  Tampere  University  of  Technology,  and  most   of  all  to  Mr.  Kalle  Koskinen  and  Dr.  Godofredo  Bautista,  for  sharing  with  me  their   outstanding  expertise  in  second-­‐‑harmonic  generation.  I  am  thankful  to  the  group  of   Prof.  Pavel  Belov  at  ITMO  University,  first  of  all,  to  Dr.  Anton  Samusev,  for  fruitful   collaboration,  discussions,  and  constant  motivation  for  finding  new  ways  of  thinking   about  my  samples.  Last  but  not  least  I  wish  to  thank  the  group  from  my  alma  mater   headed   by   Prof.   Andrey   Lipovskii,   where   I   started   my   research   in   the   field   of   plasmonics,  and  particularly  to  Dr.  Alexey  Redkov,  Mr.  Alexander  Kamenskii,  Mr.  

Sergey   Scherbak,   and   Mrs.   Ekaterina   Babich,   for   continuous   and   prosperous   collaborative  studies.  

Besides  all  the  bright  individuals  forming  the  team  of  our  Department,  I  would   like  to  acknowledge  the  hospitable  people  and  environment  at  the  whole  University   of  Eastern  Finland,  and  more  than  that  –  the  whole  Finnish  society.  I  learned  a  lot   from   this   country   and   admire   many   things   here   –   not   only   nature,   but   also   organization  of  work,  particularly  almost  full  absence  of  bureaucracy.  

Regarding  the  Thesis,  I  am  very  grateful  to  my  honorable  reviewers  Prof.  Zhipei   Sun  and  Dr.  Vladimir  Melekhin  for  their  valuable  remarks  to  the  manuscript  and  to   my  friend  Mrs.  Rahel  Beil,  who  put  hundreds  of  forgotten  articles  in  their  places  in   the  text.  

Last  but  not  least  I  would  like  to  thank  my  friends  who  always  supported  me  in   various   ways   during   my   career.     I   am   happy   to   have   a   brother,   whose   progress   always  encouraged  me  to  try  harder.  And  of  course,  I  wish  to  thank  from  the  bottom   of   my   heart   my   parents   and   grandparents   who   always   pushed   me   to   be   a   better   person  and  supported  me  even  if  it  was  not  always  clear  what  I  am  doing.  

   

Joensuu,  November  5,  2017   Semyon  Chervinskii  

   

(13)

 

LIST  OF  ABBREVIATIONS  

 

AFM     atomic  force  microscopy   ALD     atomic  layer  deposition   GMN     glass-­‐‑metal  nanocomposite   SEM     scanning  electron  microscopy  

SERS     surface-­‐‑enhanced  Raman  spectroscopy   SPR     surface  plasmon  resonance  

TEM     transmission  electron  microscopy    

   

(14)

 vi  

LIST  OF  ORIGINAL  PUBLICATIONS  

This  thesis  is  based  on  data  presented  in  the  following  articles,  referrred  to  by  the   Roman  Numerals  I-­‐‑V.  

 

I   S.  Chervinskii,  I.  Reduto,  A.  Kamenskii,  I.  Mukhin,  A.A.  Lipovskii  “2D-­‐‑

patterning  of  self-­‐‑assembled  silver  nanoisland  films”  Faraday  Discussions  186,   107-­‐‑121  (2016).  

 

II   S.  Chervinskii,  R.  Drevinskas,  D.  V.  Karpov,  M.  Beresna,  A.  A.  Lipovskii,  Yu.  

P.  Svirko  &  P.  G.  Kazansky  “Revealing  the  nanoparticles  aspect  ratio  in  the   glass-­‐‑metal  nanocomposites  irradiated  with  femtosecond  laser”  Scientific   Reports  5,  13746  (2015);  6,  18522  (2016).  

 

III   A.  Redkov,  S.  Chervinskii,  A.  Baklanov,  I.  Reduto,  V.  Zhurikhina  and  A.  

Lipovskii  “Plasmonic  molecules  via  glass  annealing  in  hydrogen”  Nanoscale   Research  Letters  9,  606  (2014);  10,  201  (2015).  

 

IV   S.  Chervinskii,  V.  Sevriuk,  I.  Reduto,  and  A.  Lipovskii,  “Formation  and  2D-­‐‑

patterning  of  silver  nanoisland  film  using  thermal  poling  and  out-­‐‑diffusion   from  glass”,  Journal  of  Applied  Physics  114,  224301  (2013).  

 

V   S.  Chervinskii,  A.  Matikainen,  A.  Dergachev,  A.  Lipovskii,  and  S.  Honkanen  

“Out-­‐‑diffused  silver  island  films  for  surface-­‐‑enhanced  Raman  scattering   protected  with  TiO2  films  using  atomic  layer  deposition”  Nanoscale  Research   Letters  9,  398  (2014).  

 

The  above  mentioned  publications  have  been  included  at  the  end  of  this  Thesis  with   their  copyright  holders’  permission.  

(15)

Besides   these   publications,   the   author   has   the   following   articles   which   are   not   included  in  this  Thesis  

 

•   K.  Koskinen,  A.  Slablab,  S.  Divya,  R.  Czaplicki,  S.  Chervinskii,  M.  

Kailasnath,  P.  Radhakrishnan,  and  M.  Kauranen  “Bulk  second-­‐‑harmonic   generation  from  thermally  evaporated  indium  selenide  thin  films”  Optics   Letters  42  (6),  1076  (2017).  

•   S.  Scherbak,  N.  Kapralov,  I.  Reduto,  S.  Chervinskii,  O.  Svirko,  A.  Lipovskii  

“Tuning  Plasmonic  Properties  of  Truncated  Gold  Nanospheres  by  Coating”  

Plasmonics  6,  1903–1910  (2017).  

•   E.S.  Babich,  S.A.  Scherbak,  F.  Heisler,  S.D.  Chervinskii,  A.K.  Samusev,  A.A.  

Lipovskii.  “Dark-­‐‑field  spectroscopy  of  plasmon  resonance  in  metal   nanoislands:  effect  of  shape  and  light  polarization”.  Journal  of  Physics:  

Conference  Series  769,  012040  (2016).  

•   M.  Som,  S.  Majumdar,  N.  Bachhar,  G.  Kumaraswamy,  G.V.P.  Kumar,  V.N.  

Manoharan,  S.  Kumar,  M.G.  Basavaraj,  S.  Kulkarni,  R.  Bandyopadhyay,  S.  

Punnathanam,  H.  Medhi,  A.  Srivastav,  D.  Frenkel,  M.  Tripathy,  E.  Eiser,  L.  

Gonzalez-­‐‑Garcia,  P.R.  Chowdhury,  J.  Singh,  V.  Sridurai,  A.  Edwards,  B.L.V.  

Prasad,  A.K.  Singh,  M.  Bockstaller,  N.S.  John,  J.  Seth,  M.  Misra,  C.  

Chakravarty,  V.  Shinde,  R.  Bandyopadhyaya,  J.  Jestin,  R.  Poojari,  N.  Kotov,   O.  Gang,  A.  Karim,  Y.  Ju-­‐‑Nam,  S.  Granick,  S.  Chervinskii  and  A.  Tao  

“Synthesis  of  Nanoparticle  Assemblies:  general  discussion”  Faraday   Discussions  186,  123-­‐‑152  (2016).  

•   I.V.  Reduto,  S.D.  Chervinskii,  A.N.  Kamenskii,  D.V.  Karpov,  A.A.  Lipovskii  

“Self-­‐‑organized  growth  of  small  arrays  of  metal  nanoislands  on  the  surface  of   poled  ion-­‐‑exchange  glasses”  Technical  Physics  Letters  42  (1),  93-­‐‑95  (2016).    

•   F.  Heisler,  E.  Babich,  S.  Scherbak,  S.  Chervinskii,  M.  Hasan,  A.  Samusev,   A.A.  Lipovskii  “Resonant  optical  properties  of  single  out-­‐‑diffused  silver   nanoislands”  Journal  of  Physical  Chemistry  C  119  (47),  26692–26697  (2015).  

•   E.S.  Piliugina,  F.  Heisler,  S.D.  Chervinskii,  A.K.  Samusev,  A.A.  Lipovskii  

“Control  of  surface  plasmon  resonance  in  out-­‐‑diffused  silver  nanoislands  for   surface-­‐‑enhanced  Raman  scattering”  Journal  of  Physics:  Conference  Series  661,   012034  (2015).  

•   I.  Reduto,  S.  Chervinskii,  A.  Matikainen,  A.  Baklanov,  A.  Kamenskii,  and  A.  

Lipovskii,  “SERS-­‐‑applicable  silver  nanoisland  films  grown  under  protective   coating”,  Journal  of  Physics:  Conference  Series  541,  012073  (2014).  

   

(16)

 viii  

AUTHOR’S  CONTRIBUTION

 

The   author   carried   out   the   nanostructures   fabrication   in   all   the   papers,   and   developed  the  technique  allowing  predetermined  growth  of  2D  silver  structures  on   the  glass  surface  described  in  Papers  I,  III  and  IV.  Besides  that,  the  author  performed   optical  absorbance  measurements  and  analysis  for  papers  I,  II,  IV  and  V.  The  author   was  significantly  involved  in  microscopic  studies  and  analysis  in  papers  I  and  III-­‐‑V,   and   participated   in   the   laser   modification   (paper  II)   and   atomic   layer   deposition   experiments  (paper  V).  The  manuscripts  for  papers  I,  II,  IV  and  V  were  prepared   with  main  input  by  the  author.  

 

(17)

 

CONTENTS  

 

INTRODUCTION  ...  1

 

1

 

PLASMONS  IN  METAL-­DIELECTRIC  STRUCTURES  ...  5

 

1.1

 

Plasma  frequency  ...  5

 

1.2

 

Surface  plasmon  polaritons  at  metal-­dielectric  interface  ...  7

 

1.3

 

Localized  surface  plasmons  ...  8

 

1.4

 

Effective  media  approximation  for  nanocomposite  ...  10

 

2

 

EXPERIMENTAL  TECHNIQUES  ...  11

 

2.1

 

 Plasmonic  nanostructures  fabrication  and  modification  ...  11

 

2.1.1  Glass-­metal  nanocomposite  ...  11

 

2.1.2  2D-­patterned  metal  nanostructure  ...  13

 

2.1.3  Atomic  layer  deposition  ...  15

 

2.1.4  Femtosecond  laser  modification  ...  16

 

2.2

 

Characterization  of  plasmonic  nanostructures  ...  18

 

2.2.1  Microscopy  ...  18

 

2.2.2  Absorption  spectroscopy  ...  19

 

2.2.3  Raman  spectroscopy  ...  19

 

3

 

FABRICATED  PLASMONIC  NANOSTRUCTURES  ...  21

 

3.1

 

Metal  nanoisland  films  ...  21

 

3.2

 

Glass-­metal  nanocomposites  ...  23

 

3.3

 

2D-­structured  metal  nanoisland  films  ...  24

 

4

 

OPTICAL  CHARACTERISTICS  OF  THE  GROWN   NANOSTRUCTURES  ...  27

 

4.1

 

 Absorption  spectra  of  metal  nanoisland  films  and  glass-­metal   nanocomposites  ...  27

 

4.1.1  Pristine  samples  ...  27

 

4.1.2  Samples  coated  with  a  highly  refractive  dielectric  ...  29

 

4.1.3  Laser-­modified  bulk  silver  nanocomposites  ...  31

 

4.2

 

Enhancement  of  the  Raman  scattering  by  self-­organized  silver  nanoisland   films  ...  34

 

CONCLUSIONS  AND  PERSPECTIVES  ...  37

 

REFERENCES  ...  39

 

 

 

(18)

     

(19)

 

INTRODUCTION  

 

Nanoplasmonics  is  a  rapidly  growing  field  studying  optical  phenomena  originating   from   collective   oscillations   of   conduction   electrons   (plasmons)   in   metal   nanostructures  and  nanoparticles.  Plasmons,  for  example,  manifest  themselves  as  a   pronounced   resonance   in   the   absorption   spectrum   of   a   glass   containing   metal   nanoparticles  resulting  in  the  glass  coloring.  This  property  of  metal  nanoparticles  has   been  used  for  centuries  providing  a  variety  of  glass  colors  for  ceramic  glazing  and   stained-­‐‑glass  artworks.  However,  the  microscopic  mechanisms  of  the  glass  coloring   (see  Figure  1)  and  its  dependence  on  the  nanoparticles  nature  and  size  have  been   understood  only  in  the  20th  century.  

 

 

Figure  1.  In  a  series  of  studies  starting  from  1959,  it  was  revealed  that  the  Lycurgus  cup  (4th   century   AD)   colors   in   reflected   (left)   and   transmitted   (right)   light   originate   from   plasmon   resonance  in  gold-­silver  nanoparticles  [1].  ©  Trustees  of  the  British  Museum.  

 

Fundamentals   of   plasmonics   have   been   established   in   the   beginning   of   the   20th   century  when  Wood  discovered  anomalies  in  reflection  spectra  of  metal  gratings  [2]  

and  Garnett  explained  coloring  in  glasses  with  embedded  metal  nanoparticles  [3].  In   the   following   years,   Mie   [4]   and   Sommerfeld   [5-­‐‑7]   calculated   the   scattering   cross   section  of  the  spherical  particle  and  radiation  pattern  of  the  dipole  situated  near  a   conductive  plane,  respectively.  However,  strong  interest  of  the  optical  community  to   plasmonic  effects  has  emerged  only  during  the  second  half  of  the  20th  century  when   rapid  development  of  the  micro-­‐‑  and  nanotechnologies  made  both  fabrication  and   investigation  of  nanoscale  objects  possible.  It  is  worth  noting  that  the  rapid  growth   in   plasmonic   research   has   also   been   supported   by   advances   in   computing   that  

(20)

2    

enabled   numerical   simulation   of   the   optical   processes   in   complex   subwavelength   structures.  

Arrays   of   metal   nanoparticles   on   dielectric   substrates   and   glass-­‐‑metal   nanocomposites  (GMN),  which  are  composed  of  metal  nanoparticles  embedded  in   bulk   dielectrics,   are   often   referred   to   as  plasmonic   structures.   Being   collective   oscillations   of   unbounded   electrons,   plasmons   appear   under   irradiation   of   metal-­‐‑

dielectric   or   semiconductor-­‐‑dielectric   interface   with   light   of   particular   resonance   wavelength.  For  noble  metals—gold,  silver  and  copper—resonance  wavelengths  lay   within  optical  or  near-­‐‑ultraviolet  range  depending  on  the  dielectric  matrix.  One  can   distinguish  localized  and  propagating  surface  plasmons.  Localized  surface  plasmon   resonance   (SPR)   is   associated   with   the   oscillation   of   electron   gas   confined   within   metal   nanoparticles.   SPR   manifests   itself   as   a   sharp   peak   in   the   absorption   and   scattering  spectra  and  in  an  enhancement  of  the  electromagnetic  field  magnitude  at   the   nanoparticle   surface.   Propagating   plasmons,   which   are   often   referred   to   as   plasmon   polaritons,   travel   along   a   metal-­‐‑dielectric   interface   and   can   at   certain   conditions  be  re-­‐‑emitted  into  free  space.  This  makes  plasmon  polaritons  attractive  for   further   miniaturization   of   integrated   and   optoelectronic   circuits   and   for   improvement   of   their   performance,   allowing   signals’   processing   at   optical   frequencies  with  subwavelength-­‐‑sized  elements.  Recently,  both  passive  and  active   photonic  components  (waveguides  [8],  junctions  [9,  10],  resonators  [11],  modulators   and  switches  [12])  relying  on  the  plasmon  polaritons  have  been  demonstrated.  

Properties   of   the   localized   and   propagating   plasmons   depend   on   the   medium   surrounding  the  metal  nanoparticles  or  nanostructures.  This  implies  that  plasmonic   structures   are   very   attractive   for   sensing   applications.   Currently,   plasmonic   sensors—including   integrated   ones—are   widely   used   for   the   detection   of   tiny   amounts  of  analytes.  These  sensors  rely  on  the  SPR  change  caused  by  variations  of   permittivity  in  the  vicinity  of  a  metal  surface  [13-­‐‑15]  or  by  nanoparticles  aggregation   [16,  17].  More  opportunities  in  sensing  are  offered  through  the  increase  of  the  electric   field  at  the  metal  dielectric  interface  due  to  plasmons  excitation  that  gives  rise  to  an   enhancement  of  photoluminescence  [18],  specifically  of  Raman  scattering  [19]  and   fluorescence  [20]  of  the  molecules  situated  in  the  vicinity  of  plasmonic  structure.  This   phenomenon  is  employed  in  the  surface-­‐‑enhanced  Raman  spectroscopy  (SERS)  [21],   as  well  as  in  tip-­‐‑enhanced  spectroscopy  and  microscopy  [22].  

SERS  involves  the  measurement  of  the  Raman  spectrum  of  an  analyte  deposited   on  the  plasmonic  substrate.  In  most  cases,  the  substrate  is  made  from  gold  or  silver,   but  other  materials  are  also  studied  [21,  23].  SERS  technique  enables  an  enhancement   of  Raman  scattering  by  many  orders  of  magnitude.  Although  the  theory  predicts  an   enhancement  as  large  as  1012  –  1014,  in  practice  it  usually  does  not  exceed  107  [19].  

Nevertheless,  such  an  enhancement  allows  SERS  to  detect  even  traces  of  analytes.  

Similarly,   by   placing   a   resonant   nanoparticle/nanostructure   at   the   tip   of   a   scanning   optical   microscope   one   can   enhance   the   intensity   of   fluorescence   of   the   target   molecules,   thus   improving   the   sensitivity   [24-­‐‑30].   The   fluorescence   enhancement  can  be  also  employed  for  visualization  of  biological  tissues  [17,  31-­‐‑33],  

(21)

 

DNA  sequencing  [16],  and  even  in  atomic  optics  [34].  It  is  worth  mentioning  that   plasmonic  nanostructures  can  be  employed  for  finding,  visualizing,  and  destroying   cancer  cells  [33].  The  enhancement  of  the  local  field  provided  by  plasmon  excitation   leads  to  stronger  luminescence  [35]  and  absorption  [36],  increases  nonlinear  optical   response   [37],   improves   the   efficiency,   and   broadens   the   spectral   range   of   photocatalysis   [38].   Strong   light   absorption   and   scattering   by   plasmons   make   plasmonic  nanostructures  prospective  for  applications  in  photovoltaic  devices  and   solar  cells  [39,  40].  

During   the   last   decade,   most   attention   has   been   paid   to   the   application   of   plasmonic  nanostructures  in  metamaterials.  In  particular,  plasmonic  materials  were   used   to   achieve   the   negative   refractive   index   in   the   vicinity   of   the   SPR   [41,   42],   hyperlensing  [41,  43-­‐‑46],  cloaking  [47,  48],  and  to  demonstrate  other  rather  unusual   optical  phenomena.  

It  is  worth  mentioning  that  SPR  frequency  and  therefore  optical  properties  of  the   plasmonic   nanostructures   can   be   tailored   by   changing   size   and   shape   of   metal   constituents  [49].  Generally  speaking,  the  control  of  the  shape  of  metal  nanoparticles   is  a  powerful  tool  to  govern  resonant  properties  of  plasmonic  nanostructures.  

At  certain  conditions,  roughness  and/or  sharp  edges  of  a  nanoparticle,  as  well  as   squeezing  the  gap  between  adjacent  nanoparticles  may  lead  to  an  extremely  high   local  electric  field  forming  so-­‐‑called  “hot-­‐‑spots”.  They  are  of  special  interest  because   one  may  expect  that  hot  spots  can  dominate  Raman  scattering,  luminescence,  and   optical  nonlinearity  of  plasmonic  nanostructures  [50].  

A  variety  of  methods  to  fabricate  different  plasmonic  nanostructures  have  been   developed   [51];   however,   the   ever-­‐‑increasing   number   of   applications   implies   the   diversity  of  fabrication  techniques  which  can  be  divided  into  so-­‐‑called  “top-­‐‑down”  

and  “bottom-­‐‑up”  techniques  [52,  53].  The  latter  are  used  to  fabricate  structures  of   somehow  predetermined  morphology  and  rely  on  self-­‐‑organization.  An  example  of   such  “bottom-­‐‑up”  techniques  is  the  growth  of  metal  nanoparticles  in  ion-­‐‑exchanged   glasses  via  thermal  annealing  (considered  in  this  Thesis)  [54]  or  under  irradiation   with   photon   and/or   ion   beams   [55,   56].   In   contrast,   in   “top-­‐‑down”   techniques,   morphological   properties   of   the   plasmonic   structure   are   pre-­‐‑determined   by   the   method  of  fabrication.  Examples  of  “top-­‐‑down”  techniques  are  optical  and/or  e-­‐‑beam   lithography   and   femtosecond   micromachining,   which   enable   to   obtain   a   metal   nanostructure  of  pre-­‐‑defined  geometry  on  the  substrate  [57].  

It   is   worth   noting   that   “top-­‐‑down”   techniques   are   hardly   applicable   for   fabrication  of  ensembles  of  metal  particles  with  lateral  dimensions  and  inter-­‐‑particle   distance  of  a  few  nanometers  [58].  Nevertheless,  these  techniques  are  very  well  suited   for  fabricating  nanoparticle  arrays  of  predefined  shape  and  mutual  arrangement  (e.g.  

nanogratings)  [59].  In  contrast,  existing  “bottom-­‐‑up”  techniques  are  capable  to  form   very  small  and  closely  packed  nanoparticles.  However,  the  size  and  arrangement  of   these   nanoparticles   may   vary   in   a   wide   range,   cannot   be   predefined,   and   the   nanoparticles  do  not  necessarily  have  a  strong  adhesion  to  the  substrate.  

 

(22)

4    

Figure   2.   Scanning   electron   microscopy   (SEM)   images   of   different   self-­assembled   silver     nanostructures  grown  in  the  course  of  annealing  after  poling  of  ion-­exchanged  glass  with  a   profiled  electrode.  

 

Thus,   it   is   very   important   for   plasmonics   to   develop   new   approaches   to   form   plasmonic   nanostructures,   combining   advantages   of   “bottom-­‐‑up”   (closely   packed   small  nanoparticles)  and  “top-­‐‑down”  (predetermined  nanoparticles  size  and  mutual   arrangements)  techniques.  In  this  Thesis,  it  is  demonstrated  that  by  combining  the   ion   exchange   and   annealing   in   a   reducing   atmosphere   with   poling   of   the   ion-­‐‑

exchanged   glass   in   a   static   electric   field   one   can   fabricate   silver-­‐‑based   plasmonic   nanostructures.  In  particular,  we  show  that  the  size  and  mutual  arrangement  of  silver   nanoparticles  can  vary  in  a  controllable  way  from  several  to  hundreds  of  nanometers   (Figure  2).  

 

(23)

 

 

1   PLASMONS  IN  METAL-­DIELECTRIC   STRUCTURES  

Collective  oscillations  of  conduction  electrons  in  metals  are  conventionally  referred   to  as  plasmons.  Since  the  behavior  of  the  electronic  ensemble  is  determined  by  the   number  of  degrees  of  freedom  of  individual  electrons,  the  properties  of  plasmons   depend  on  the  system  dimensionality.  This  implies  that  the  plasmons  may  behave   differently  in  bulk  (3D)  metals,  at  the  metal-­‐‑dielectric  interface  (2D),  in  metal  wires   (1D),  and  metal  nanoparticles  (0D).  At  optical  frequencies,  plasmons  in  metals  can   couple  with  photons  to  create  quasiparticles  called  plasmon  polaritons  [60].  

Glassy   nanomaterials   comprising   of   metal   nanoparticles   in   glass   matrix   are   of   special  interest  because  they  possess  a  pronounced  surface  plasmon  resonance  (SPR)   associated   with   collective   oscillations   of   conduction   electrons   at   the   nanoparticles   surface   [60].   Sensitivity   of   the   SPR   to   external   influences   offers   a   wide   range   of   opportunities  for  photonic  and  optoelectronic  devices  [61,  62].  

   

1.1   PLASMA  FREQUENCY  

 

In   the   space-­‐‑frequency   domain,   the   evolution   of   the   electromagnetic   field   in   a   homogeneous,  non-­‐‑magnetic,  isotropic  medium  with  dielectric  constant  ε(ω)  can  be   described  by  Maxwell  equations  [63]:  

 

𝛻 ∙ 𝑬(𝒓, 𝜔) =0         (1)  

𝛻 ∙ 𝑩(𝒓, 𝜔) = 0         (2)  

𝛻×𝑬(𝒓, 𝜔)   =  𝑖𝜔𝑩(𝒓, 𝜔)       (3)  

𝛻×𝑩 𝒓, 𝜔 = −𝑖324𝜀 𝜔 𝑬(𝒓, 𝜔)     (4)    

where  E  and  B  are  electric  field  and  magnetic  induction,  and  it  is  assumed  that  there   are   no   external   electric   charges.   The   electromagnetic   field   is   determined   by  ε(ω),   which   should   be   obtained   from   microscopic   theory   accounting   for   electronic   properties  of  the  medium  [64].  

In  metals,  oscillations  of  conduction  electrons  which  can  freely  travel  through  the   crystal  skeleton  can  be  conventionally  described  in  terms  of  the  Drude  model  [65]:  

 

64

674𝒓 + 𝛾676𝑟 = −<;𝑬 𝑡     (5)    

where  r  is  the  displacement  of  the  electron  from  its  equilibrium  position,  γ  is  the  rate   of  the  momentum  relaxation  due  to  the  electron  collisions  with  a  crystal  skeleton  and  

(24)

6  

impurities,  e   and  m   are   electron   charge   and   mass,   respectively.   For   the   harmonic   electric  field,  𝑬 𝑡 = 𝑬𝑒𝑥𝑝 −𝑖𝜔𝑡 + 𝑐. 𝑐.,  the  amplitude  of  the  electron  oscillations  of   the  frequency  ω,  𝒓 𝑡 = 𝒓𝑒𝑥𝑝 −𝑖𝜔𝑡 + 𝑐. 𝑐.  is  given  by  the  following  equation  [60]:  

 

𝒓 =<(24;DEF2)𝑬.       (6)    

Correspondingly,  macroscopic  polarization  of  the  medium  (a  dipole  momentum   of  a  unit  volume)  is  given  by  the  linear  constitutive  equation  𝑷 = −𝑁𝑒𝑬 = 𝜀I𝜒 𝜔 𝑬,   where  N  is  the  free  electron  density  and  

 

𝜒 𝜔 = −L K;

M<(24DEF2)𝑬     (7)    

is  the  susceptibility  of  the  medium  at  frequency  ω  [51].  Since  𝜀 𝜔 = 1 + 𝜒 𝜔  [60],   the  following  equation  for  the  dielectric  constant  of  the  metal  in  the  Drude  model   framework  can  be  derived:  

 

𝜀(𝜔) = 1 −242DEF2O4 ,       (8)    where  𝜔P= 𝑛𝑒R/(𝜀I𝑚;)  is  the  plasma  frequency.  

One  can  observe  from  Eq.  (8)  that  at  γ = 0,  the  imaginary  part  of  the  dielectric   constant  is  zero,  and  no  optical  losses  occur.  Such  materials  are  often  referred  to  as   simple  metals.  Since  in  simple  metals  the  dielectric  constant  becomes  zero  at  ω = ωU,   this   frequency   corresponds   to   the   collective   oscillations   of   all   electrons   in   a   bulk   metal.  

Plasma   frequency   is   an   important   parameter   describing   interaction   of   electromagnetic  waves  with  metals.  At  ω < ωU,  the  dielectric  constant  is  negative  so   the  refractive  index  is  imaginary.  Waves  incident  on  the  medium  in  this  frequency   region   do   not   propagate   but   will   be   totally   reflected.   At  ω > ωU,   the   dielectric   function   is   real   and   positive,   i.e.,   electron   gas   is   transparent   and   transverse   electromagnetic  waves  can  propagate  in  plasma.  For  metals,  the  plasma  frequency  is   usually  in  the  UV  spectral  range.  For  example,  plasma  frequency  of  silver  is  about  9   eV  which  corresponds  to  resonant  wavelength  of  about  140  nm  [66-­‐‑68].  

In  real  metals,  the  contribution  of  the  ion  lattice  to  the  dielectric  constant  can  be   taken  into  consideration  by  introducing  a  dielectric  constant  εX  (usually,  1  <  εX<  10)   [60]:  

 

𝜀(𝜔) = 𝜀X242DEF2O4 .     (9)    

It  is  worth  noting  that  at  high  frequencies,  the  interband  transitions  may  contribute   to  the  value  of  the  metal  dielectric  constant.  In  particular,  the  transitions  to  the  d-­‐‑

(25)

 

band  about  4  eV  modifies  the  dielectric  function  of  silver  in  blue  and  near-­‐‑UV  range   [51,  64].  

   

1.2   SURFACE  PLASMON  POLARITONS  AT  METAL-­DIELECTRIC   INTERFACE  

 

When  an  electromagnetic  wave  is  incident  on  the  metal  surface,  the  oscillations  of   the  electron  density  at  the  metal/dielectric  interface  can  be  coupled  to  the  incident   wave  allowing  excitation  of  the  surface  plasmon  polariton.  

 

Figure  3.  The  system  geometry  for  the  surface  plasmon  polariton  (SPP)  problem.    

 

Let  us  consider  a  plane  interface  between  a  metal  with  a  relative  permittivity  𝜀(𝜔)   given  by  Eq.  (9)  and  a  dielectric  with  a  refractive  index  n.  We  choose  the  interface  to   coincide  with  the  plane  z  =  0  of  a  Cartesian  coordinate  system  (see  Figure  3).  The   surface  plasmon  polaritons  are  homogeneous  solutions  of  Maxwell’s  equations  (i.e.  

eigenmodes)   confined   at   the   metal-­‐‑dielectric   interface.   By   taking   into   account   the   continuity  of  the  tangential  components  of  the  electric  field  and  normal  components   of   the   displacement   at   the   interface,   vectors   of   the   electric   field   associated   with   plasmon  polariton  in  metal  (𝐸<(𝑧 < 0))  and  dielectric  (𝐸[(𝑧 > 0))  can  be  presented   in  the  following  form  [51]:  

 

𝑬<∝ 1; 0; − L 2^ 𝑒𝑥𝑝 𝑖𝑘`P𝑥 + 𝑖𝑘a<𝑧 ,   (10)   𝑬[∝ 1; 0; − L 2^ 𝑒𝑥𝑝 𝑖𝑘`P𝑥 − 𝑖𝑘a[𝑧 .  (11)    Here    

 

(26)

8  

𝑘`P=23 L 2 D^L 2 ^44       (12)    

is  the  wavevector  of  the  surface  plasmon  polariton,  propagating  along  x-­‐‑axis  of  the   Cartesian  frame  in  Figure  3,  while  𝑘a<= 𝑘`P L 2

^    and  𝑘a[= 𝑘`P ^

L(2)  determine  the   decay  of  the  electric  field  amplitude  inside  the  metal  and  dielectric,  respectively.    

Surface  plasmon  polariton  propagating  along  x-­‐‑axis  implies  a  real  𝑘`P.  One  may   observe  from  (12)  that  this  condition  can  be  fulfilled  if  𝜀 𝜔  and  𝜀 𝜔 +𝑛R  are  either   both  positive  or  both  negative.  On  the  other  hand,  in  order  to  obtain  a  wave  localized   at  the  interface,  the  𝑘a<  and  𝑘a[  should  be  purely  imaginary  in  both  media  leading   to   exponentially   decaying   solutions.   This   can   only   be   achieved   if  𝜀 𝜔 +𝑛R  is   negative.  Therefore,  the  surface  plasmon  polariton  at  the  metal-­‐‑dielectric  interface   exists  at  𝜀 𝜔 +𝑛R< 0.  This  condition  can  be  readily  fulfilled  for  an  interface  between   noble  metals  (e.g.  gold  and  silver),  which  have  a  large  negative  real  part  and  a  small   imaginary  part  of  the  dielectric  constant,  and  a  dielectric  (e.g.  glass  or  air).  It  is  worth   noting  that  in  the  framework  of  the  Drude  model  [65]  the  condition  𝜀 𝜔 +𝑛R= 0  is   fulfilled  at  

 

𝜔`P= 2O

bD^4.       (13)    

This  frequency  corresponds  to  the  collective  oscillation  of  conduction  electrons  at  an   infinite  plane  interface.  

   

1.3   LOCALIZED  SURFACE  PLASMONS  

 

When   metal   nanoparticles   are   embedded   in   a   dielectric,   the   free   electrons   are   localized   within   the   nanoparticles.   The   collective   oscillations   of   the   conduction   electrons  at  the  metal-­‐‑dielectric  interface  are  often  referred  to  as  localized  surface   plasmons.  In  order  to  describe  these  oscillations  for  a  metal  spherical  nanoparticle   with  a  radius  of  a ≪ λ  one  can  employ  the  quasi-­‐‑static  approximation  [63,  69].  In  this   approximation,  Maxwell  equations  (1)  and  (3)  reduce  down  to  

 

𝛻 ∙ 𝑬 = 0,     (14)  

𝛻×𝑬 = 0.     (15)    

By  substitution  𝑬 = −𝛻 ∙ 𝛷,  the  electric  potential  Φ  can  be  found  from  the  solution  of   the  Laplace  equation  

 

𝛻R∙ 𝛷 = 0.     (16)    

(27)

 

The   solution   of   this   equation   for   a   spherical   particle   with   radius  a   and   dielectric   constant  𝜀  embedded  into  a  dielectric  (𝜀[)  in  presence  of  the  external  field  along  z-­‐‑

axis  of  the  laboratory  Cartesian  frame  𝐸 = {0,0, 𝐸I}  can  be  presented  in  the  following   form  [63]:  

 

𝛷E^(𝒓, 𝜃) = −LDRLkLl

l𝐸I𝒓𝑐𝑜𝑠𝜃,       (17)   𝛷op7(𝒓, 𝜃) = −𝐸I𝒓𝑐𝑜𝑠𝜃 +LDRLLqLl

l𝐸I𝑎k  3o`s𝒓4 ,   (18)    

where  r   and  θ   are   cylindrical   coordinates,   while   subscripts   “in”   and   “out”   label   potential  inside  and  outside  the  sphere,  and  𝜀[= 𝑛R.  The  second  term  on  the  right-­‐‑

hand  side  of  Eq.  (18),  which  describes  the  electric  potential  produced  by  the  particle,   can   be   presented   in   terms   of   the   dipole   moment  𝑝  induced   in   the   particle   by   the   external  electric  field  [60]:  

 

𝛷op7(𝒓, 𝜃) = −𝐸I𝒓𝑐𝑜𝑠𝜃 +tuLP∙𝒓

MLl𝒓v.     (19)    

The  dipole  moment  𝑝 = 𝜀I𝜀[𝛼𝐸I,  where  α  is  the  sphere  polarizability  [60]:  

 

𝛼 = 4𝜋𝑎k LqLLDRLl

l.       (20)    

One  can  observe  from  Eq.  (20)  that  at  𝜀 = −2𝜀[  the  polarizability  of  the  particle  tends   to   infinity   giving   rise   to   the   SPR.   In   the   framework   of   the   Drude   model,   SPR   frequency  can  be  presented  in  the  following  form  [60]:  

 

𝜔`P|= bDRL2O

l.       (21)  

 

The   SPR   frequency   depends   on   the   shape   of   the   nanoparticle.   In   particular,   for   a   complicated  shape  the  polarizability  is  described  by  a  tensor,  i.e.,  the  SPR  resonance   may   depend   on   the   direction   of   the   electric   field.   In   particular,   the   diagonal   components  of  the  polarizability  tensor  of  an  ellipsoid  with  radii  ai,  i=1,2,3  are  [60]:  

 

𝛼E= 4𝜋𝑎b𝑎R𝑎k LqLl

kLlDk}~(LqLl),     (22)    

where  Li  is  the  geometrical  factor:  

 

𝐿E=R4v [‚

(€~4D‚) (€4D‚)(€44D‚)(€v4D‚) X

I .   (23)  

 

In  paper  II  an  example  of  spheroidal  (𝑎b= 𝑎R≠ 𝑎k)  nanoparticles  was  discussed  in   detail.  

 

(28)

10  

1.4   EFFECTIVE  MEDIA  APPROXIMATION  FOR   NANOCOMPOSITE  

 

Effective  media  approximations  are  widely  used  to  calculate  the  optical  properties  of   a  composite  consisting  of  metal  nanoparticles  embedded  in  a  dielectric  matrix.  In  the   framework  of  this  approach,  the  composite  is  considered  as  a  ‘uniform’  (effective)   medium  of  which  the  macroscopic  properties  reflect  the  ones  of  the  composite.  At   the  relatively  low  volume  fraction  of  metal  in  the  composite,  its  optical  and  electronic   properties  can  be  described  in  terms  of  the  Maxwell  Garnett  approach  [70].  Effective   dielectric  permittivity  of  the  composite  including  metal  nanospheres  will  be      

𝜀„…= 𝜀[(LDRLl)DR†(LqLl)

(LDRLl)q†(LqLl).     (24)    

If  inclusions  in  the  composite  have  a  shape  differing  from  spherical,  this  results  in   more  complicated  expressions  for  the  dielectric  function  [71].  In  the  framework  of   this   study,   the   case   of   spheroidal   inclusions   was   studied   in   experiments   and   numerically  in  paper  II.  

 

(29)

 

2   EXPERIMENTAL  TECHNIQUES  

2.1    PLASMONIC  NANOSTRUCTURES  FABRICATION  AND   MODIFICATION  

   

2.1.1  Glass-­metal  nanocomposite    

All   plasmonic   nanostructures   studied   in   this   Thesis   were   fabricated   using   ion   exchange  followed  by  thermal  annealing  in  a  reducing  atmosphere.  This  “bottom-­‐‑up”  

technique  allows  one  to  fabricate  metal  nanoisland  films  on  the  glass  surface  and   metal  nanoparticles  in  the  subsurface  layer  of  the  glass  slab  (Figure  4).  

Ion   exchange   in   glasses   is   known   since   the   9th   century   when   it   was   used   for   manufacturing   colorful   glazings   on   ceramics   in   Mesopotamia   and   spread   in   the   Mediterranean  region  by  the  12th  century  [72,  73].  Modern  history  of  ion  exchange   began  about  a  century  ago,  when  potassium  exchange  has  started  to  be  applied  for   chemical  strengthening  of  glasses’  surface  [74-­‐‑77].  In  the  1970s,  the  ion  exchange  was   proposed   to   fabricate   planar   and   stripe   waveguides   [78]   and   more   complicated   components  of  planar  optics  [79].  Another  broad  application  area  of  ion  exchange  is   gradient  lens  fabrication  [80]  suggested  by  Mikaelyan  in  1951  [81].  Nowadays  the   gradient-­‐‑index  lenses,  obtained  by  ion  exchange  in  glass  rods,  are  widely  applied  in   connectors  fabrication  for  fiber  optics.  

The  ion  exchange  method  relies  on  the  replacement  of  ions,  which  were  initially   contained  in  the  glass,  with  other  ions  supplied  from  external  sources;  this  exchange   is  driven  by  the  chemical  potential  [82].  In  our  studies,  the  silver  ion  exchange  in   soda-­‐‑lime   glass   was   used,   i.e.,   silver   ions   replaced   alkali   (sodium)   ions   in   the   subsurface  region  of  the  glass  slab.  In  the  experiments,  the  glass  was  immersed  in   AgxNa1-­‐‑xNO3  (x=0.01..0.15,  0.05  by  default)  melt  at  325  °C  for  5-­‐‑60  minutes  (Figure   4a).  At  this  temperature,  the  glass  remained  solid,  while  the  ions  were  already  able   to  migrate.  As  a  result,  sodium  ions  in  the  subsurface  layer  of  the  glass  were  replaced   by  silver  ones  with  the  thickness  of  this  layer  and  the  silver  concentration  profile   being  dependent  on  the  melt  composition  along  with  the  duration  of  the  process  and   its  temperature  [83].  

 

(30)

12  

 

Figure  4.  Sketch  of  the  silver  nanoisland  films  growth  process.  a)  In  ion  exchange,  soda-­lime   glass  slide  is  immersed  in  AgxNa1-­xNO3  (x=0.01-­0.15)  melt  (325  °C,  5  minutes  –  hour),  during   this  time  silver  ions  from  the  melt  replace  sodium  ones  in  the  glass  subsurface;;  b)  Hydrogen   penetrating   the   glass   reduces   silver   ions   to   atoms;;   in   the   course   of   diffusion   and   self-­

arrangement  silver  forms  nanoparticles  either  on  the  glass  surface  or  both  on  the  surface  and   in   the   bulk   of   the   glass.   c)   After   annealing   of   the   ion-­exchanged   glass   slide   in   a   hydrogen   atmosphere  (75-­350  °C,  30  seconds  -­  3  hours)  the  silver  nanoisland  film  grows.  Inset:  atomic   force  microscopy  (AFM)  image  in  the  grown  film  example.  

 

(31)

 

Thermal  annealing  in  a  reducing  atmosphere,  which  was  used  in  our  experiments,   is   a   well-­‐‑known   method   for   the   formation   of   metal   particles   and   clusters   in   ion-­‐‑

exchange  glasses  [84-­‐‑86].  Specifically,  we  used  the  annealing  in  hydrogen  (in  some   cases  air  or  water  vapor  [87])  atmosphere  at  temperatures  of  75-­‐‑350  °C  during  30   seconds  to  3  hours  (Figure  4bc).  

In  the  course  of  the  annealing,  hydrogen  diffused  into  subsurface  regions  of  the   glass  and  reduced  silver  ions  to  neutral  atoms  by  replacing  silver  at  bonds  with  non-­‐‑

bridging  oxygen  atoms  [88]:  

 

≡ Si − O − AgD+1

2HR→≡ Si − O − HD+ AgI    

The  metal  reduction  led  to  the  formation  of  an  oversaturated  solid  solution  of  neutral   silver  in  the  glass  matrix,  which  tends  towards  a  phase  decomposition  due  to  low   solubility  of  atomic  silver  in  glasses.  The  decomposition  resulted  in  growth  of  the   silver  clusters  and  nanoparticles,  thus,  they  were  able  to  form  self-­‐‑organized  silver   nanoisland  films  on  the  glass  surface  and/or  silver  nanoparticles  in  the  subsurface   layer  of  the  glass.  The  method  can  be  employed  for  obtaining  nanoparticles  from   other  noble  metals,  in  particular,  from  copper  [89].  

   

2.1.2  2D-­patterned  metal  nanostructure    

To  obtain  ensembles  of  nanoislands  of  a  prescribed  geometry  the  thermal  poling  of   the   glass   slab   at   elevated   temperature   was   performed   after   completing   the   ion   exchange   process.   In   thermal   poling   a   heated   glass   plate   is   placed   between   two   electrodes,   and   positive   ions   drift   from   the   subsurface   layer   beneath   an   anodic   electrode   to   the   glass   interior.   Applying   a   profiled   anodic   electrode   to   the   glass   surface  resulted  in  redistribution  of  metal  ions  in  the  subsurface  layer  and  promoted   nanoislands’   formation   at   locations   dictated   by   the   electrode   profile   (Figure   5)   through  the  local  poling  of  the  glass.  The  technique  described  in  this  section  was   proposed  in  Paper  IV  and  developed  in  Papers  III  and  I.  

In   the   last   two   decades,   glass   poling   was   studied   extensively.   It   has   been   demonstrated  that  the  migration  of  ions  occurring  within  glass  in  the  course  of  poling   results  in  structural  and  compositional  changes  in  its  subsurface  regions  [90-­‐‑94].  The   ion  redistribution  lifts  the  inversion  symmetry  of  glass  giving  rise  to  the  second  order   nonlinearity  [95,  96].  This  study  focused  particularly  on  the  migration  of  silver  ions   in  silver-­‐‑enriched  glass  under  the  applied  electric  field.  

(32)

14  

 

Figure  5.  Sketch  of  the  2D-­patterned  structures’  growth  process.  Ion  exchange  (a)  performs   as  in  Figure  4.  Thermal  poling  of  ion-­exchanged  glass  using  profiled  anode  (b)  (200-­350  °C,   DC  500-­600  V,  30  seconds  -­  30  minutes)  results  in  an  adjustment  of  the  silver  ions  distribution   (c).  After  annealing  of  the  poled  ion-­exchanged  glass  silver  nanoislands  grow  only  in  areas   where  the  anodic  electrode  did  not  contact  the  surface  (d).  

 

(33)

 

In   order   to   grow   the   silver   nanoparticles   in   the   predetermined   areas   of   the   glass   surface   we   employed   patterned   anodic   electrodes   with   submicron   hollows   on   its   surface  and  a  polished  nickel  plate  as  a  cathode.  The  anode  was  fabricated  from  a   polished  glassy  carbon  slab  (3x100x100  mm3  with  Ra  <  50  nm,  Svensk  Specialgrafit   AB),   which   was   cut   into   pieces   of   a   lateral   size   of   20x25   mm2   by   electron   beam   lithography  followed  by  ion  plasma  etching.  Before  the  lithography,  50  nm  of  chrome   as  a  mask  were  deposited  by  electron-­‐‑beam  evaporation  in  Kurt  J.  Lesker  Company   Lab  18  setup.  After  that,  the  chrome  film  was  spin-­‐‑coated  with  positive  e-­‐‑beam  resist   Allresist  AR-­‐‑P  6200  which  was  then  baked.  Electron  beam  exposure  was  done  in  the   Vistec  Lithography  Ebeam  EBPG5000  setup.  Subsequently,  the  resist  was  developed   using  the  SSE  OPTIspin  SST  120  setup;  chrome  was  etched  through  the  developed   resist  in  the  reactive  ion  etching  setup  Plasmalab  100,  and  then  glassy  carbon  was   etched   through   this   chrome   mask   to   form   the   final   structure   in   the   reactive   ion   etching  station  Plasmalab  80plus.  Finally,  the  remains  of  chrome  were  chemically   removed,   and   profiled   glassy   carbon   was   cleaned   via   ultrasonic   washing,   first   in   acetone   and   then   in   isopropanol.   The   depth   of   the   formed   hollows   in   the   glassy   carbon  was  50-­‐‑400  nm  depending  on  the  ion  etching  parameters.  

Poling  was  performed  by  applying  DC  voltage  of  500-­‐‑600  V  to  the  ion-­‐‑exchanged   glass  heated  at  200-­‐‑350  °C;  the  duration  of  poling  varied  between  30  seconds  and  3   hours,   in   some   cases   sample   preheating   was   used.   During   the   poling   process,   positively  charged  silver  ions  drifted  into  the  glass  volume,  however  the  drift  length   under   the   hollows   in   the   electrode   was   smaller   than   that   under   the   contact   areas   (Figure  5b).  It  is  worth  noting  that  smaller  hollows  provided  less  ion  distribution   contrast.  

Hydrogen  annealing  described  in  section  2.1.1  converted  silver  ions  which  were   inhomogeneously  distributed  beneath  the  glass  surface  into  the  silver  nanoislands   on  the  glass  surface.  Redistribution  of  silver  ions  in  the  subsurface  layer  by  poling   allows  a  formation  of  silver  nanoisland  only  in  areas  corresponding  to  hollows  in  the   electrode  (Figure  5c).  Unfortunately,  a  lack  of  knowledge  on  the  diffusion  coefficients   of  silver  atoms  and  hydrogen  molecules  in  poled  and  unpoled  glass  did  not  allow  us   to   develop   a   quantitative   description   of   this   process   to   compare   with   empirical   parameters   obtained   in   our   experiments   and   used   in   the   fabrication   of   the   nanostructures.  

   

2.1.3  Atomic  layer  deposition  

 Atomic  layer  deposition  (ALD)  is  widely  used  for  deposition  of  thin  films,  of  which   the  thickness  can  be  controlled  at  an  atomic  level.  Besides  thickness  control,  ALD  is   known  for  precise  reproduction  of  the  coated  surface  morphology.  Currently,  the   ALD  method  is  employed  for  deposition  of  thin  layers  and  their  combinations  for   photovoltaic,  catalysis,  microelectronics  and  other  applications  [97].  

(34)

16  

The   ALD   method   is   based   on   alternate   reagent   feeding   (compared   to   simultaneous  for  chemical  vapor  deposition)  with  following  chamber  purging  with   neutral   gas   [98,   99].   Due   to   this,   the   reaction   between   the   delivered   material   components  takes  place  only  on  the  substrate  surface  where  the  atomic  layer  of  this   material  is  formed  [100].  Reaction  products  remaining  in  the  gas  phase  are  removed   from  the  chamber  at  the  next  purging  step.  

For  additional  protection  of  manufactured  metal  nanostructures  and  modification   of  their  properties,  an  atomic  layer  deposition  of  thin  layers  of  titanium  dioxide  was   employed.  This  material  was  chosen  for  its  high  refraction  index  (n=2.3-­‐‑3  in  300-­‐‑1300   nm   wavelength   range)   which   strongly   affects   the   plasmon   resonance   properties   including   wavelength   and   because   of   its   applicability   in   photovoltaics   [101].   The   films  were  deposited  at  0.07  nm/cycle  rate  at  120  °C  in  the  Beneq  TFS-­‐‑200  (Beneq,   Espoo,   Finland)   reactor   using   TiCl4   and   water   as   precursors;   between   cycles   the   reactor  chamber  was  purged  with  nitrogen.  The  deposited  layers  thickness  range  was   from  3  nm  (minimal  thickness  providing  uniform  coating)  to  200  nm  in  accordance   with  the  study  tasks.  

 

2.1.4  Femtosecond  laser  modification      

Since  the  invention  of  the  first  lasers,  they  have  been  extensively  used  for  materials   processing.  This  is  because  the  laser  radiation  allows  one  to  concentrate  extremely   high  densities  of  optical  energy  in  the  focal  spot  with  a  lateral  size  of  as  low  as  one   micron.  In  transparent  materials,  the  control  of  the  spatial  position  of  the  focal  spot   makes   it   possible   to   modify   the   material   with   micron   spatial   resolution   in   three   dimensions  [102].  Lately,  the  possibility  of  modification  within  the  volume  attracted   attention  as  a  method  of  information  recording  with  an  extremely  high  density  [103].  

In  the  case  of  modification  of  glass  with  nanoparticles,  laser  irradiation  can  result  in   change  of  their  shape  and  size  which  in  turn  affects  the  local  resonant  properties  of   the  nanocomposite  [104,  105].  Such  nanocomposites  comprising  of  elongated  metal   nanoparticles  in  a  dielectric  matrix  possess  intrinsic  anisotropy  [69],  which  provides   linear  and  nonlinear  dichroism  and  birefringence  [106,  107].  It  is  worth  noting  that   anisotropic  composites  can  be  conventionally  fabricated  by  stretching  the  glass  slabs   with  the  embedded  spherical  nanoparticles  [108].  However,  such  stretching  does  not   allow  one  to  control  birefringence  and  dichroism  on  a  submicron  scale  comparable   to  optical  wavelength,  which  is  needed  for  modern  photonic  devices.  The  required   spatial-­‐‑selective   modification   with   a   submicron   resolution   can   be   obtained   by   irradiation  of  the  composites  with  a  focused  laser  [109-­‐‑112]  or  ion  beam  [113,  114].  

Glass   with   embedded   metal   nanoparticles   can   be   modified   with   femtosecond   [115],  picosecond  [116],  or  nanosecond  [111]  laser  pulses,  or  even  with  CW  laser  [117].  

This  modification  results  in  changes  of  the  nanoparticles’  shape  from  spherical  to   spheroidal  (one  of  the  main  mechanisms  is  shown  in  Figure  6)  with  morphological   properties  depending  on  the  modification  parameters.  The  morphology  of  the  GMN  

Viittaukset

LIITTYVÄT TIEDOSTOT

Vuonna 1996 oli ONTIKAan kirjautunut Jyväskylässä sekä Jyväskylän maalaiskunnassa yhteensä 40 rakennuspaloa, joihin oli osallistunut 151 palo- ja pelastustoimen operatii-

Mansikan kauppakestävyyden parantaminen -tutkimushankkeessa kesän 1995 kokeissa erot jäähdytettyjen ja jäähdyttämättömien mansikoiden vaurioitumisessa kuljetusta

Helppokäyttöisyys on laitteen ominai- suus. Mikään todellinen ominaisuus ei synny tuotteeseen itsestään, vaan se pitää suunnitella ja testata. Käytännön projektityössä

Työn merkityksellisyyden rakentamista ohjaa moraalinen kehys; se auttaa ihmistä valitsemaan asioita, joihin hän sitoutuu. Yksilön moraaliseen kehyk- seen voi kytkeytyä

Since both the beams have the same stiffness values, the deflection of HSS beam at room temperature is twice as that of mild steel beam (Figure 11).. With the rise of steel

Adsorption : an increase in the concentration of a dissolved substance (adsorbate) at the interface of a condensed and a liquid phase (adsorbent) due to the operation of

The new European Border and Coast Guard com- prises the European Border and Coast Guard Agency, namely Frontex, and all the national border control authorities in the member

The US and the European Union feature in multiple roles. Both are identified as responsible for “creating a chronic seat of instability in Eu- rope and in the immediate vicinity