• Ei tuloksia

Electrode material studies and cell voltage characteristics of the in situ water electrolysis performed in a pH-neutral electrolyte in bioelectrochemical systems

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Electrode material studies and cell voltage characteristics of the in situ water electrolysis performed in a pH-neutral electrolyte in bioelectrochemical systems"

Copied!
11
0
0

Kokoteksti

(1)

This is a version of a publication

in

Please cite the publication as follows:

DOI:

Copyright of the original publication:

This is a parallel published version of an original publication.

This version can differ from the original published article.

published by

electrolysis performed in a pH-neutral electrolyte in bioelectrochemical systems

Givirovskiy Georgy, Ruuskanen Vesa, Ojala Leo S., Lienemann Michael, Kokkonen Petteri, Ahola Jero

Georgy Givirovskiy*, Vesa Ruuskanen, Leo S. Ojala, Michael Lienemann, Petteri Kokkonen, Jero Ahola. Electrode material studies and cell voltage characteristics of the in situ water electrolysis performed in a pH-neutral electrolyte in bioelectrochemical systems. Heliyon, 5(2019) e01690, p.1-10. DOI: https://doi.org/10.1016/j.heliyon.2019.e01690

Publisher's version Elsevier

Heliyon

10.1016/j.heliyon.2019.e01690

© 2019 The Authors.

(2)

Heliyon 5 (2019) e01690

Contents lists available atScienceDirect

Heliyon

www.elsevier.com/locate/heliyon

Electrode material studies and cell voltage characteristics of the in situ water electrolysis performed in a pH-neutral electrolyte in

bioelectrochemical systems

Georgy Givirovskiy

a,∗

, Vesa Ruuskanen

a

, Leo S. Ojala

b

, Michael Lienemann

b

, Petteri Kokkonen

b

, Jero Ahola

a

aLUTUniversity,P.O.Box20,FI-53851,Lappeenranta,Finland

bVTTTechnicalResearchCentreofFinlandLtd.,P.O.Box1000,02044VTT,Finland

A R T I C L E I NF O A B S T R A C T

Keywords:

Bioengineering Electrochemistry Materialschemistry

Hydrogen-oxidizingbacteria(HOB)havebeenshowntobepromisingmicro-organismsforthereduction of carbondioxidetoa wide rangeof value-addedproductsin bioelectrochemical systemswithinsitu water electrolysisofthecultivationmedium,alsoknownasahybridbiological-inorganicsystems(HBI).However, scalingupof thisprocessrequires overcomingtheinherentconstraintsof thelow energyefficiencypartly associatedwiththepH-neutralelectrolytewithlowconductivity.Mostoftheresearchinthefieldisconcentrated onthebacterialcultivation,whereastheanalysisandevaluationoftheelectrodematerialperformancehave receivedlittleattentionintheliteraturesofar.Therefore,inthepresentwork,in situelectrolysisofa pH- neutralmediumforHOBcultivationwasperformedwithdifferentcombinationsofelectrodematerials.Besides conventionalelectrodetypes,electrodeswithcoatingsmadeofearth-abundantcobaltandanickel-ironalloy, knownfortheircatalyticactivityforthekineticallysluggishoxygenevolutionreaction(OER),wereprepared andtested aspotential substitutes forcatalysts madeof precious metals.The cultivation of HOB within situwaterelectrolysishasbeensuccessfullytestedinasmallscaleelectrobioreactorinordertosupportthe experimentalresults.Asimplifiedwaterelectrolysismodelwasdevelopedandappliedtoevaluatethecurrent- voltagecharacteristicsofanbioelectrochemicalsystemprototype.Applicationofthedevelopedmodelallows quantitativeevaluationandcomparisonofreversible,ohmic,andactivationovervoltagesofdifferentelectrode sets.Themodelingresultswerefoundtoagreewellwiththeexperimentaldata.Thedevelopedmodelandthe datagatheredcanbeappliedtofurtherinvestigation,simulation,andoptimizationofHBIsystems.

1. Introduction

The rapid economic growth and the increasing consumption of fossil-fuel-based energy have led to higher concentrations of pollu- tantgasesintheatmosphere,depletionofnaturalresources,adverse climateimpacts,andgeopoliticaltensions.Theglobalshiftfromafossil- fuel-basedeconomytoarenewable-energy-basedonehasthepotential totackle theaforementioned problems[1, 2]. Electrical energypro- ducedfromabundantrenewableenergysources,suchassolarandwind power,isconsideredtobethecleanestformofenergy.However,the fluctuating nature of these sources leads totechnical challenges as- sociated with the storage of the generated electricity [3]. Recently, hydrogen,whichisthesimplestandlightestelement,hasbeenshown

*

Correspondingauthor.

E-mailaddress:georgy.givirovskiy@lut.fi(G. Givirovskiy).

tobeasustainableandpromisingenergycarrierintheHydrogenEcon- omyConcept[4].Eventhoughthecurrentlydominatingtechnologiesof hydrogenproductionaresteamreforming,partialoxidationofhydro- carbons,andcoalgasification,thedevelopmentofadvancedtechnolo- giesforrenewable-energy-basedhydrogenproductionisgivenahigh priority,andthetopicisattractingscientificinterest.Oneofthemost maturetechnologiesofrenewablehydrogenproductioniselectrolysis ofwater[5].Bythismethod,surpluspeakelectricityfromrenewable energysourcesisappliedtogeneraterenewablehydrogen,whichcan befurtherusedinPower-to-Xprocessestoproducenetcarbon-neutral fuelsandchemicals[6,7].

Oneapproachattractingscientificinterestinthiscontextismicro- bial electrosynthesis(MES), electricity-driven synthesis of chemicals

https://doi.org/10.1016/j.heliyon.2019.e01690

Received19October2018;Receivedinrevisedform5April2019;Accepted7May2019

2405-8440/© 2019TheAuthors. PublishedbyElsevierLtd. ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/li- censes/by-nc-nd/4.0/).

(3)

andfuels.Microbialelectrosynthesis(MES)isanemergingtechnology capableofusingwaterelectrolysisandvariousmicroorganismsdirectly forthereductionofcarbondioxidetovalue-addedcompoundsinbio- electrochemicalsystems(BESs).TheconceptwasfirstprovenbyNevin et al.[8],whowereabletoreducecarbondioxidetoacetateandsmall amounts of 2-oxobutyrateby applying electriccurrent toacetogenic microorganisms. Thesubsequentresearchrevealedanopportunityof applyinginsituwaterelectrolysisandmicrobesfortheefficientproduc- tionof othervalue-addedcommodities.Informationabout chemicals thatcanbeproducedinbioelectrochemicalsystemscanbefoundin[9]

and[10].Hydrogen-oxidizingbacteria(HOB),themetabolicgrowthof whichisbasedontheuseofhydrogenasanelectrondonorandoxygen asanelectronacceptor,wereshowntobepromisingmicroorganismsfor thereductionofcarbondioxidetoawiderangeofvalue-addedproducts [11].Volovaet al.[12] foundthatthebiologicalvalueofproteinssyn- thesizedbydifferentstrainsofhydrogen-oxidizingbacteriaissufficient toconsiderthemasapotentialproteinsourceforhumanandanimal nutrition.Moreover,researchiscurrentlycarriedoutintoHOB-based singlecellproteinproduction.Forinstance,Matassaet al.[13] used autotrophichydrogen-oxidizingbacteriatorecycleammoniarecovered byairstrippingfromawastewatertreatmentplantandcapturedCO2, togetherwithhydrogenandoxygenproducedbywaterelectrolysis,to foodandfeed[13,14].Furthermore,apilotplanthasbeenconstructed inBelgiumwithintheframeworkofaPower-to-Proteinproject,which producessinglecellproteinwithatargetedcapacityof1 kg–2 kgper day[15].However,theseprocessesrequireexternalsupplyofhydrogen andoxygentothebioreactorswheretheHOBarebeingcultivated.The applicationofbioelectrochemicalsystemwithinsituwaterelectrolysis couldprovideasolutionforovercomingthemasstransferlimitations ofthisprocess,andcouldthusbeconsideredaprospectivestrategyfor renewableelectricalenergystorage.Torellaet al.[16] reporteddevel- opmentofascalableintegratedbioelectrochemicalsystemusingHOB forcarbondioxideconversionintobiomassandisopropylalcoholwith maximumbioelectrochemicalefficienciesof 17.8%and3.9%,respec- tively.AdistinctivefeatureofthisBESwastheuseofacobaltphosphate (CoPi)anode,whichiscapableofperformingoxygenevolutionreaction (OER)atlowoverpotentialsataneutralpH.Thesameanodematerial wasusedincombinationwithacobalt-phosphorus(Co-P)alloycathode inthestudiesofLiuet al.[17] toestablishaneffectivewatersplitting systemforHOBconversion intobiomass atanefficiencyof approxi- mately55%withinaperiodofsixdaysatanappliedpotentialof2.0 V.

Inadditiontobiomass,polyhydroxybutyrate(PHB),whichisconsidered anintermediatecompoundinmicrobialassimilationofcarbondioxide, wassynthesizedwitha36%energyefficiency.Furthermore,different fuselalcohols wereproducedwithefficienciesrangingfrom approxi- mately15%to30%.Hybridbiological-inorganic(HBI)systems,which couplemicroorganismswithchemicalcatalyststoderivevalue-added products,havealsobeenapplied,forexample,toammonia[18] and bacterialbiomassproduction[19].

Nevertheless,upscalingofbioelectrochemicalprocessesforHOBcul- tivation requires overcoming theinherent constraints of low energy efficiency.Thetargetofthepresentstudyistodevelopascalableen- ergyefficientsystemforcultivationofhydrogen-oxidizingbacteria.The effectsofvariousoxygenevolution(OER)catalystsareextensivelyre- portedin theliteratureforalkalinewaterelectrolyzers,butthereare onlyafewstudiesofelectrolyzercellperformanceinbioreactorswith pH-neutralconditionssofar.Further,asimplifiedmathematicalmodel is introduced,basedon modelsdeveloped fortraditionalwaterelec- trolyzers.Themodelparametersaretunedandthemodelisverifiedby experimental results.Themodelis appliedtoquantitativelyevaluate andcomparepossibleovervoltagesourcesinthesystemwithvarious electrodematerials.

Thispaperisorganizedasfollows.Thecharacteristicsoftheinsitu waterelectrolysis,initialHOBcultivationresultswithinsituwaterelec- trolysis,theexperimentalsetupusedforelectrodematerialtests,the proceduredescribinginsituformationofcoatings,andthesimplified

electrolyzercellvoltagemodelareintroducedin Section2. Thecell voltagemodelparametersarefittedbyexperimentalresults,andthe modelisappliedtodescribetheperformanceoftheselectedelectrode materialsinSection3.Finally,Section4concludesthepaper.

2. Materials& methods

This sectionfirst defines thespecial characteristicsof thein situ waterelectrolysiscomparedwithtraditionalwaterelectrolyzers.HOB cultivationresultswithinsituwaterelectrolysisareshown.Further,the experimentalsetupandmethodsappliedforelectrolyzercellstudiesin thispaper,includingtheanalyticalmodelusedtodescribetheoperation characteristicsoftheelectrolyticcell,areintroduced.

2.1. Insituwaterelectrolysischaracteristics

One of the key issues of the gas-fermentation-based hydrogen- oxidizingbacteriaproductionisthemasstransferofthehydrogengas tothecultivationmedium,eventhoughahydrogengasconversionef- ficiencyupto81%hasbeenreported[13].Themasstransferproblems canbeeffectivelyavoidedbyBES,wherethein situwaterelectroly- sistakesplacedirectlyinthecultivationmedium.However,theinsitu waterelectrolysisimposessomeconstraintsonthesystem.Firstly,the temperaturesandpressuresmustbeinafavorablerangefortheHOB.

Secondly,thecurrentdensitiesappliedtothewaterelectrolysismustbe limitedtolevelsnotharmingtheHOB.Finally,numerousrequirements aresetontheelectrolyte,whichalsoactsasacultivationmedium,and theelectrodes themselves. Contrarytothetraditionalalkalinewater electrolysis,thecultivationmedium mustofferanalmostpH-neutral environmentfor thebacteria.This constraintis connectedtotheki- netically sluggish oxygen evolution reaction (OER), which produces a highactivation overvoltage. Further,the side reactions producing toxiccompoundsmustbeprevented.Inpractice,theselimitationslead toasignificantlylowerconductivityoftheelectrolytecomparedwith thetraditionalalkaline electrolysis.Therefore, toachievean accept- ableenergyefficiencyofthewaterelectrolysis,relativelylowcurrent densitieshavetobeapplied,whichleadstolargeelectrodeareas,yet thedistancebetweentheelectrodesisminimized.Becauseofthelarge electrodearea,low-costelectrodematerialsarepreferred.Finally,the electrodematerialsmustbecorrosionresistantnottoreleaseanytoxic compoundstothecultivationmedium.

2.2. HOBcultivationexperimentswithinsituwaterelectrolysis

ThecultivationofHOBwithinsituwaterelectrolysishasbeensuc- cessfullytested in asmall scaleelectrobioreactor[20]. Theresearch utilizedaBESwithinternalliquidvolumeof60 mlasshowninFig.1a.

CO2 gas wasfed tothereactor,while hydrogenandoxygenfor the microbialgrowthandCO2fixationweregeneratedinsidethereactor vesselatastainlesssteelcathodeandaniridiumoxidecoatedtitanium anode.Theelectrodesweremanufacturedfromwiresofaforementioned materialswhichwereloopedincoilssothatthesurfaceofeachelec- trodewas13 cm2.

InFig.1b,thebiomassincreaseofahydrogenenrichmentculture ispresented.Theculture wasamixedpopulation ofyetunidentified species,whichhadevolvedatleastsomeresistancetowardstheBESen- vironment.Thebioreactorwasfedwith0.13 g h−1gaseousCO2,and suppliedwithelectrolysiscurrentof18 mA,whichroughlyequalscur- rentdensityof1 mA cm−2atthesurfaceoftheelectrodes,withaverage cellvoltageof2.31 V.

Thecellmassincreasesin linearfashion asthegrowthis limited bytheavailabilityofhydrogen. Assumingfaradicefficiencyof unity fortheelectrolysisofwaterandcompleteconsumptionofthehydro- gen,theapparentbiomassyieldfromhydrogenwascalculatedtobe 2.5 gbiomass/molH

2.Matassaet al.havecollectedbiomasstohydrogen

(4)

G. Givirovskiy et al. Heliyon 5 (2019) e01690

Fig. 1.Experimentalsetupusedforthecultivationtests:(a)schemeofthesmall-scalein-situelectrolysisbioelectrochemicalsystem,and(b)biomassincreaseofa mixedhydrogenenrichmentculture.

Fig. 2.Experimental setup used for the electrolysis tests: (a) cross section of the electrolyzer cell, (b) photo of the experimental setup.

yieldsforvariousHOBspeciescultivatedwithgaseoushydrogenfeed [13].

The published values range between 1.12 gbiomass/molH

2– 4.64 gbiomass/molH

2,thereforetheHOBcultivationwithinsituelectrol- ysisgivesbiomassyieldcomparabletothegaseousH2feedcultivation, butwithouttheneedforhandlingandstorageofflammable,andpo- tentiallyexplosive,hydrogengasandhydrogen –oxygengasmixtures.

Thevolumetricproductivityofbiomassduringthecultivationtest isbelow15 mg l−1h−1whilethehydrogenproductionisthelimiting factorforthegrowth.Therefore,thehydrogenproductionratemustbe improvedtoenhancethevolumetricproductivityoftheelectrobioreac- tor.Therefore,thecurrentdensityorelectrodeareamustbeincreased toimprovetheproductivity.Inthisarticle,theelectrodematerialsare studiedtoenhancethecurrentdensitywithoutloweringtheefficiency.

2.3. Experimentalelectrodematerialstudysetup

TheexperimentalsetupispresentedinFig.2.Thesetupconsistsof thefollowingelements: (i)anelectrolyzercellwithacross-sectional areaof2.6 cm2andaninitialdistanceof3 mmbetweentheelectrodes, (ii)aWaveNowpotentiostattoconductelectrochemicalmeasurements, (iii)awaterbathwithasubmergedLaudaheatertokeepthesystem optimalforthebacterialcultivationtemperatureof33C,and(iv)a constantflowpumptocirculatethemediumthroughtheexternalvessel equippedwiththetemperaturemeasurement.Differentcombinationsof electrodematerials,suchasstainlesssteel(SS),nickel(Ni),graphite(C),

platinum(Pt),cobaltphosphate(CoPi),nickel-iron(NiFe),andiridium dioxide(IrO2)depositedontoatitaniumsubstrate,weretested.Stain- lesssteeliswidelyusedmaterialbecauseoftherelativelylowcostand highcorrosionresistanceinmostenvironments.ApplicabilityofSS304 materialforHOBcultivationswasfirststudiedby[16],whiletheef- fectof stainlesssteelor carbonsurfacemodificationbyCoPi orCoP electrocatalystswasfurtherinvestigatedinthesubsequentstateofthe artstudiesof thesameresearch group[17, 18, 19]. However,HOB haveshowedtohaveeffectonthecorrosionofthelowcarbonsteels [21].Further,theselected316Lhasbeenmentionedtobevulnerable tomicrobialcorrosion,andsomeothersteelshouldbeselectedifun- coatedelectrodesareusedforlongerperiodsoftime[22].Platinum iswidelyusedaselectrodematerialbecauseofitsstabilitydespitethe highcost.Nickelbasedmetalsarewidelyusedinalkalinewaterelec- trolyzers,andtherefore,usedasareferencefortheothermaterials[23].

Graphiteisalsostable,butnothighlycatalyticmaterial.CoPicoatings areshowntobeselfhealingandbiocompatibleintheliterature[17].

IrO2coatedanodeisfoundtobeapromisingcandidateintheHOBcul- tivationexperimentsdescribedabove.Linearsweepvoltammetry(I–V) wasappliedtomeasurethecellvoltageasafunctionofcellcurrent.

Thesweeprateof thelinearsweepvoltammetrywas selected tobe 10 mV s−1tomitigatetheeffectofcellcapacitances.

Themineralmedium,used for thebioelectrochemicalcultivation ofhydrogen-oxidizingbacteriapreparedaccordingtotheDSM-81-LO4 recipeattheVTTTechnicalResearchCentreofFinland,wasapplied asanelectrolyteinthestudy.Oneliterofthemediumsolution con- 3

(5)

Fig. 3.Scanningelectronmicroscope(SEM)imagesofthecobaltphosphate(CoPi)coatingonto(a)graphitesubstrate,(b)stainlesssteelsubstrate,and(c)nickel-iron (NiFe)coatingontostainlesssteelsubstrate.

taineddistilledwater,50 mlofphosphatebuffer,2.3 g(KH2PO4),2.9 g (Na2HPO4),2 ml(NH4)(Fe)(citrate),0.005 gofferricammoniumcitrate (16%Fe),10 mlof(NaHCO3)solution,0.5 g(NaHCO3),mineralsalts, 5.45 g(Na2SO4),1.19 g((NH4)2SO4),0.5 g(MgSO4⋅5H2O),0.0117 g (CaSO4⋅2H2O),0.0044 g(MnSO4⋅1H2O),0.005 g(NaVO3),and5 ml oftraceelementsolution.500 mloftraceelementstocksolutionwas madefrom0.05 g(ZnSO4⋅7H2O),0.15 g(H3BO3),0.1 g(CoCl2⋅6H2O), 0.005 g(CuCl2⋅2H2O),0.01 g(NiCl2⋅6H2O),and0.015 g(Na2MoO4).

Thephosphatebuffer,theammoniumiron(III)citrate,themineralsalts, andthetraceelementsolutionswereautoclavedseparately.Thevita- minsolution(NaHCO3)wasfiltersterilized.Thesolutionswerecom- binedasepticallyatroomtemperature.ThepHandconductivityofthe medium,measuredbeforeandaftertheelectrolysistests,were7and 12 mS cm−1,respectively.

2.4. Insitucatalystformation

Electrodeposition of coatings based on earth-abundant first-row transitionmetalssuchasCoandFe–Niisconsideredanefficientmethod for theelectrodesurfacestructure modificationandenhancementof theelectrochemicalactivity.Inthepresentstudy,insitupreparation ofcoatingswasperformedintheexperimentalsetupdescribedinthe previoussectionbasedontheelectrodepositionstrategiesadoptedfrom [16] and[24].Cobaltphosphate(CoPi)coatingwaselectrodeposited ontographiteandstainlesssteelplates(substrates)inasolutioncon- taining0.1MKH2PO4and0.5 mMCo(NO3)2⋅6H2Oand250 mlofdis- tilleddeionizedwater.Pretreatmentoftheelectrodesamplesincluded polishingwithsandpaperandrinsingwithacetoneanddeionizedwa- ter.Electrolyticdepositionwascarriedoutbybulkelectrolysisat2 Vfor 5 hforthegraphitesubstrateandfor3 hforthestainlesssteelsubstrate.

Graphiteandstainlesssteelwereusedastheauxiliaryandreference electrodeforthecorrespondingexperimentsinatwo-electrodesystem.

SolutionwithtwotimesincreasedconcentrationofCo2+ wasalsode- positedontothestainlesssteelsubstratetoinvestigatetheinfluenceof theincreasedcobaltmassonthecoatingstructureandtheelectrochem- icalperformanceofthesynthesizedcatalyst.

Insituformationofnickel-iron(NiFe)coatingwascarriedoutbythe bulkelectrolysismethodat2.8 Vfor15 mininthesolutioncontaining 0.1MNa2SO4,0.25MNiSO4⋅6H2O,0.25MFeSO4⋅7H2O,and250 ml ofdistilleddeionizedwater.AsmallamountofH2SO4wasaddedtothe solutiontoadjustthepHto2.Astainlesssteelplatewiththeafore- mentioned pretreatmentwas used as a substratefor theelectrolytic depositionofthenickel-iron(NiFe)film.Scanningelectronmicroscope (SEM)imagesoftheobtainedcobaltphosphate(CoPi)andnickel-iron (NiFe)structuresarepresentedinFig.3.

2.5. Cellmodel

Inneutralconditions(pH=7),thewaterelectrolysisisdescribedby thefollowingelectrochemicalreactions[7].Oxidationhalf-reactionat theanode–oxygenevolutionreaction(OER):

2H2O⟶O2+ 4H++ 4e, 𝐸0= 0.817V (1) Reductionhalf-reactionatthecathode–hydrogenevolutionreaction (HER):

4H2O+ 4e⟶2H2+ 4OH, 𝐸0= −0.413V (2) Theoverallreactionintheelectrolyticcell:

2H2O+electrical energy⟶O2+ 2H2, 𝐸0= −1.23V (3) Theaboveequationsdemonstratethattheequilibriumorreversible cellvoltage,whichisthelowestpotentialrequiredfortheelectrolysis totakeplaceat25C and1atm,isequalto1.23 V.However,inprac- tice,highervoltagesarerequiredtodissociatewater;thisisduetothe additionalovervoltagespresentedinthefollowingequation:

𝑈cell=𝑈rev+𝑈ohm+𝑈act+𝑈con, (4) where𝑈cellisthecellvoltage,𝑈revisthereversibleopencircuitvoltage, 𝑈ohmistheovervoltagecausedbyohmiclossesinthecellelements,𝑈act

istheactivationovervoltagecausedbyelectrodekinetics,and𝑈con is theconcentrationovervoltagecausedbymasstransportprocesses[1].

(6)

G. Givirovskiy et al. Heliyon 5 (2019) e01690

Inelectrolysis,theproductionofhydrogenandoxygenisdirectly proportionaltothemeanvalueofthecurrentflowingthroughtheelec- trolyzercell.Thus,thehydrogenandoxygenproductionrates(mol s−1) ofasingleelectrolyticcellcanbeexpressedas:

𝑓H2=𝜂F

𝑖cell𝐴cell

𝑧𝐹 , (5)

where𝑧 (𝑧=2and4for hydrogenandoxygen,respectively)is the numberofmolesofelectronstransferredinthereaction,𝐹 istheFara- dayconstant(9.6485×104C mol−1),𝑖cellisthecurrentdensity(A cm−2), 𝐴cellistheeffectivecellarea(cm2),and𝜂𝐹 istheFaradayefficiency, alsoknownasthecurrent efficiency.Inthis study,theFaraday effi- ciencycanbeassumedtobeunitybecausethereshouldbenoleakage currents,andfurther,astheproductgasisamixtureofhydrogenand oxygen,thereisnoleakageofhydrogentotheoxygenlineasintradi- tionalelectrolyzers[25].Therefore,thehydrogenproductionratecan bedirectlyestimatedbasedoncurrent,andthevoltageeventuallyde- scribestheenergyefficiencyofthecell.

Asimplifiedmodeltodescribetheelectrolyticcellvoltagebehavior asafunctionofcurrentisintroduced.Theopen-circuitvoltagecanbe describedusingtheNernstequation[26]

𝑈rev=𝑈rev0 +𝑅𝑇el

𝑧𝐹 ln

⎛⎜

⎜⎝ 𝑝H2𝑝1∕2O2

𝑝H2O

⎞⎟

⎟⎠, (6)

where𝑈rev0 isthereversiblecellvoltage,𝑅istheuniversalgasconstant (8.3144621 J mol−1K−1),and𝑇elisthetemperature.Further,𝑝H2,𝑝O2, and𝑝H2Oarethehydrogen,oxygen,andwaterpartialpressures.

Thereversiblecellvoltageisdefinedasafunctionoftemperature;

for example,fora PEMelectrolyzer cellin [27] andfor analkaline electrolyzer cellwith theKOH electrolytein [28]. However,in this simplifiedcase,theopen-circuitcellvoltageunderconstantoperating temperatureandatmosphericpressureisconsideredasoneparameter tobefoundbythecurvefittingofthemeasureddata.

Theohmicoverpotentialismainlycausedbythevoltageacrossthe cultivationmediumwiththeconductivityintherangeof10 mS cm−1 astheconductivityoftitaniumorstainlesssteelelectrodesisroughly 2.5 kS cm−1.Therefore,theohmicoverpotentialcanbeexpressedas 𝑈ohm=𝛿m𝑖cell

𝜎m , (7)

where𝛿misthedistancebetweentheelectrodesin(cm),and𝜎misthe conductivityofthemediumin(S cm−1).

The activation overpotential is typically described by using the Butler–Volmerequation[29]

𝑈act=𝑅𝑇el

𝛼an𝐹arcsinh ( 𝑖cell

2𝑖o,an

) + 𝑅𝑇el

𝛼cat𝐹arcsinh ( 𝑖cell

2𝑖o,cat

)

, (8)

where𝛼isthechargetransfercoefficientfortheanodeandthecathode separately,and𝑖oistheexchangecurrentdensityontheelectrodesur- faces.Thechargetransfercoefficientsandtheexchangecurrentdensi- tiesareexperimentallydefinedasafunctionoftemperatureforexample in[30].

Finally,thesimplified modelfor thecellvoltageasafunctionof currentcanbeexpressedas

𝑈cell=𝑈rev+𝛿m𝑖cell

𝜎m

+𝛼arcsinh (𝑖cell

2𝑖0

)

, (9)

where𝑈rev,𝜎m,𝛼,and𝑖0aretheparameterstobefittedbytheexperi- mentaldata.

3. Results& discussion

Graphitewasusedasanelectrodematerialforthefirstbioelectro- chemicalcultivationtestsofanacetogenicmicroorganismin[8].Nickel and stainless steel have traditionally been used with alkaline elec- trolyzerswhereasnoblemetalsandtheiroxides,suchasplatinumand

Fig. 4.Experimentalresultsofwaterelectrolysiswithstainlesssteel(SS)elec- trodes,obtainedwithavariabledistance,andthemodelingresultswithEq.

(9).

iridiumdioxide,areknownfortheirhighcatalyticactivity.Therefore, theperformanceoftheaforementionedmaterialswasstudiedforthe electrolyteintroducedinSection2.Thepotentialofcoatedelectrodes preparedbyelectrodepositionofCoandaFe–Nialloyasapossiblesub- stituteforelectrodesmadeofpreciousmetalswasalsoevaluated.

BothhydrogenandoxygenareimportantinthecultivationofHOB, andthus,amembrane-freeelectrolyzercellprototypewasusedforthe electrolysistests.Theabsenceofamembranemakesitpossibletode- creasethedistancebetweentheelectrodesandincreasetheelectrical efficiency,whichisespeciallyimportantinpH-neutralconditions.How- ever,theflowofbiomassthroughtheelectrolyzercanbecomeanissue atverylowdistancesbetweentheelectrodes.Hence,theelectrodema- terialsweretestedatdistancesvaryingfrom3 mmto16 mmtocollect thevoltage-currentcharacteristicsoftheelectrolyzercellasafunction ofdistance betweentheelectrodes.Inthepresentsection, thelinear sweepvoltammetryresultsforvariousanodeandcathodematerialsets oftheinsitu waterelectrolysisarepresentedandanalyzedwiththe developedcellmodel.

3.1. Stainlesssteelelectrodes

First, stainless steel electrodes were used as the anode and the cathode.Themainsolutesof theSanmac316Lalloyperweightare:

chromium17.0%, nickel10.1%, molybdenum 2.0%, andmanganese 1.6%.Thedistanceoftheelectrodeswasvariedtostudytheeffectof distanceonthecellvoltage.Further,theresultsareusedtoverifythe simplifiedcellmodel.Asonlythedistancebetween theelectrodes is changedandresistiveconductionlossesaredescribedbythemedium conductivity,allthemodelparametersshouldmatcheachotherinall cases.Aminimum distance of3 mmbetween theelectrodeswas se- lectedtolimitthe flowresistance of theelectrolyte. Further,itwas assumedthatdistances exceeding10 mmcannotbe usedbecauseof thelowconductivityoftheelectrolyte.Thecellvoltageasafunctionof currentdensityisshowninFig.4.

Thedistancebetweentheelectrodeshasasignificantimpactonvolt- ageowingtothehighohmiclossescausedbythelowconductivityof themedium.Ifthevoltageefficiencyoftheelectrolysisisrequiredtobe higherthan50%,consideringthethermoneutralvoltageof1.48 V,the currentdensitycannotexceedthevalueof10 mA cm−2atthedistance of3 mmbetweentheelectrodesasthecurrentdensitiesincommercial alkalineelectrolyzersareupto500 mA cm−2[31].Atgreaterdistances theallowedcurrentdensitywouldbeevenlower.Therefore,itcanbe concludedthatthedistancebetweentheelectrodesshouldbeasshort aspossibletoachieveahighefficiencyandacompactstructure.The parameters𝑈rev,𝜎m, 𝛼,and𝑖0 in Eq.(9) were determinedusing ex- perimentalvoltageandcurrentdataandthemethodofnonlinearleast squareregression,andpresentedinTable1.Further,thereversiblevolt- age,theohmicvoltage,andtheactivationvoltagetermsarepresented separatelyinFig.5.

5

(7)

Fig. 5.Reversiblevoltage,ohmicovervoltage,andactivationovervoltageasafunctionofcurrentdensityforthewaterelectrolysisexperimentswithavariable distancebetweenthestainlesssteelelectrodes:(a)𝛿m= 3mm,(b)𝛿m= 5mm,(c)𝛿m= 9mm,and(d)𝛿m= 16mm.

Table 1

Experimentallyfittedparametersofthesimplifiedcellmodelwithstainlesssteel electrodes.

𝛿m(mm) 𝑈rev(V) 𝜎m(S cm−1) 𝛼(-) 𝑖0(A cm−1)

3 1.905 0.012 0.393 0.0010

6 2.058 0.012 0.425 0.0021

9 2.132 0.012 0.530 0.0036

16 1.92 0.012 0.278 0.0007

Wecanseethattheohmicoverpotentialbecomeshigherthanthe activation overpotential at relatively moderate current densities of 3 mA cm−1–25 mA cm−1dependingonthedistancebetweentheelec- trodes.Atgreatdistancesbetweentheelectrodestheohmicoverpoten- tialevenexceedsthereversiblevoltage.Thereversiblevoltageandthe activationoverpotentialarealmostthesamewithalldistancesbetween theplates,assupposed,thatsupportstheuseofthesimplifiedmodel.

3.2. Anodematerialcomparison

According toEq. (1), thepotential of the anode half reaction is higher thanthepotential ofthecathodehalfreaction. Therefore,all thestudiedmaterialswereappliedtotheanodeasthecathodeismade ofstainlesssteel.Thecellvoltageswithdifferentanodematerialswith theelectrodedistanceof3 mmarepresentedasafunctionofcurrent densityinFig.6.

Ascan beseen inFig.6,theanodematerialhasasignificantef- fectonthecellvoltage,especiallyathighercurrentdensities.Graphite clearlyexhibitstheworstperformancewiththehighestcellvoltage,and thenickelandplatinumanodeshavevoltagesrelativelyclosetoeach other.Theiridium-dioxide-coatedanodeisobviouslythemostfavorable anodematerialofthestudiedmaterials.Withtheiridiumdioxide,acur- rentdensityof15 mA cm−2canbeachievedwithavoltageefficiency of50%.Thereversiblevoltage,theohmicvoltage,andtheactivation voltagetermsasafunctionofcurrentdensitywithdifferentanodema-

Fig. 6.Cellvoltageasafunctionofcurrentdensitywithvariousanodematerials andastainlesssteelcathode.Thesolidlinesindicatethemeasureddataandthe dashedlinesrepresentthesimplifiedmodel.

Table 2

Experimentallyfittedparametersofthesimplifiedcellmodelwithvariousan- odematerials.

Anode 𝑈rev(V) 𝜎m(S cm−1) 𝛼(-) 𝑖0(A cm−1)

C 2 0.012 0.455 0.0010

Ni 2 0.012 0.338 0.0007

Pt 1.975 0.012 0.332 0.0007

IrO2 1.766 0.012 0.351 0.0013

terialsarecomparedwitheachotherinFig.7andthemodelparameters areshowninTable2.

The material selection significantly affects the reversible voltage andtheactivationvoltage.The iridiumoxideyieldsaslightlylower reversiblevoltagecompared withtheothermaterials.Theactivation overpotentialishighestinthecaseofthegraphiteanodeastheactiva- tionoverpotentialswiththeothermaterialsareinthesamerangewith eachother.Furthermore,theresistivevoltagelossismainlycausedby

(8)

G. Givirovskiy et al. Heliyon 5 (2019) e01690

Fig. 7.Separatedovervoltagesforthewaterelectrolysisexperimentswithdifferentanodematerials:(a)graphite(C),(b)nickel(Ni),(c)platinum(Pt),and(d) iridiumdioxide(IrO2).

Fig. 8.Cellvoltageasafunctionofcurrentdensitywithcoatedelectrodesused astheanodesandstainlesssteelasthecathode.

thelow-conductivityelectrolytemedium,andthus,theelectrodemate- rialhaspracticallynoimpactonit.

3.3. Coatedelectrodes

Subsequently,coatedelectrodeswereappliedtotheanodeandstain- less steel was used as the cathode. The cellvoltages with different coatedanodematerialswiththeelectrodedistanceof 3 mmarepre- sentedasafunctionofcurrentdensityinFig.8.

ItcanbeclearlyseenfromFig.8thatcoatedelectrodescanbecon- sideredanattractivealternativeforcatalystsmadeofpreciousmetals.

Electrodepositionof CoandtheNi-Fealloyenablessubstratesurface structure modification by enhancement of the electrochemically ac- tivesurfacearea,whichiswellshowninFig.3.Theobtainedhighly orderedCoPicoatingsexhibitedabetterperformancethanthePtan- ode,whereastheperformanceoftheNi-Fefilmwascomparablewith theIrO2 anode.Acurrentdensity ofapproximately14 mA cm−2 was achievedwithavoltageefficiencyof50%whenusingstainless steel coatedwiththeNi-Fealloy.Itwasalsofoundthatthesubstratematerial

Table 3

Experimentally fitted parameters of the simplified cellmodel with various coatedelectrodesusedastheanodematerials.

Anode 𝑈rev(V) 𝜎m(S cm−1) 𝛼(-) 𝑖0(A cm−1)

C(CoPi-sol.1) 1.790 0.012 0.443 0.0014

SS(CoPi-sol.1) 1.630 0.012 0.359 0.0006

SS(CoPi-sol.2) 1.695 0.012 0.370 0.0009

SS(NiFe) 1.449 0.012 0.338 0.0004

hadaneffectontheelectrochemicalperformanceoftheelectrode.The performanceoftheCoPicoatingonthegraphitesubstratewasslightly lowerthantheperformanceofthesamecoatingelectrodepositedonto stainlesssteelsubstrates.TheperformancesoftheCoPi coatingselec- trodepositedontothestainlesssteelsubstratefromsolution1andso- lution2with0.5and1mMconcentrationsofCo2+,respectively,were similar.

Thereversiblevoltage,theohmicvoltage,andtheactivationvoltage termsasafunctionofcurrentdensitywithdifferentcoatedanodesare comparedwitheachotherinFig.9andthemodelparametersareshown inTable3.

3.4. Cathodematerialcomparison

Finally,themostpromisinganodematerialswerealsousedasthe cathodematerialtoseeiftheperformancecanbefurtherimproved.The cellvoltageswithdifferentanodeandcathodematerialcombinations arepresentedasafunctionofcurrentdensityinFig.10,andthemodel parametersaresummarizedinTable4.

Currentdensitiesof 25,15,and10 mA cm−2wereachievedwith thevoltageefficiencyof50%for IrO2,Pt, andSS usedforboth the anodeandthecathode.Inthepreviousresearch[16],HOBmanagedto tolerateandgrowatcurrentdensitiesuptoapproximately4 mA cm−2 with2.5 Vcellpotential.Furtherincreaseofthedrivingvoltageupto 3 Vresulted intheexponentialincrease ofthecelldensitiesandthe 7

(9)

Fig. 9.Separatedovervoltagesforthewaterelectrolysisexperimentswithdifferentcoatedelectrodesusedastheanodematerials:(a)graphitecoatedwithCoPi usingsolution1,(b)stainless steelcoatedwithCoPiusingsolution1,(c)stainless steelcoatedwithCoPiusingsolution2,and(d)stainless steelcoatedwithNiFe.

Fig. 10.Cellvoltageasafunctionofcurrentdensitywiththebest-performing anodeandcathodematerials.

Table 4

Experimentallyfitted parametersofthesimplifiedcellmodel withthebest- performingelectrodematerials.

An./Cath. 𝑈rev(V) 𝜎m(S cm−1) 𝛼(-) 𝑖0(A cm−1)

Pt-Pt 1.4 0.012 0.255 0.0002

IrO2-IrO2 1.366 0.012 0.227 0.0004

highestreportedvalueforthecurrentdensity,whichbacteriamanaged totolerate,was11 mA cm−2.

It is importanttonote,thatthere was nosubstantial increase in theperformancewhenusingCoPiandNi-Fecoatedcatalystsforboth electrodesincomparisonwiththeexperimentswhereSSwasusedas thecathodematerial.Thus,wecanstatethattheaforementionedcoat- ings arecatalyticallyactive foroxygenevolutionreaction (OER)but donotexhibithighcatalyticactivityforhydrogenevolutionreaction (HER).EventhoughIrO2showsthebestperformanceastheanodeand cathodematerial,theSSperformanceisstillacceptablewhenconsider- ingthehighmanufacturingcostofcatalystsmadeofpreciousmetals.

Furthermore,theSScan beconsideredapotentialcost-effectivesub-

stratematerial forelectrodepositionof coatings.Itcan beconcluded thatinaneutralenvironmentthecathodematerialalsohasasignif- icant effect on the water electrolysis performance. The celloverpo- tentialswithdifferent electrodematerial combinationsareshown in Fig.11.

Thereversiblevoltagewithboththeplatinum- andiridium-dioxide- coated cathodes is significantly lower than with the stainless steel cathode.Further,theiridium-dioxide-coatedcathodeexhibitsalower activationoverpotentialthanplatinum.

4. Conclusions

Inthepresentpaper,asimplifiedcellmodelwasproposed tode- scribe thecellvoltagecomponents asa function of current density.

Itisnoteworthythatthechemicalformulationoftheelectrolytesig- nificantly affectsthe electrical resistanceof theelectrolysis celland thereby the energy efficiency of the whole process. The developed modelwasimplementedtoanalyzetheapplicabilityofnumerouselec- trode materials for the in situ electrolysis of a pH-neutral medium forbioelectrochemicalcultivationofhydrogenoxidizingbacteria.The modelenablesquantitiveevaluationof thereversiblevoltage,ohmic overpotential,andactivationoverpotentialfordifferentsetsofelectrode materials.

TheobtainedhighlyorderedCoPiandNi-Fecoatingsexhibitedan oxygenevolution reaction (OER) performanceexceeding thatof the Ptanode andbeing comparablewith theIrO2 anode. However, the aforementionedcoatingsdid not show asubstantial improvementin performanceforthehydrogenevolutionreaction(HER)comparedwith thestainlesssteelcathode.Basedonthisobservation,wecanconclude thatadditionalresearchisrequiredtofindsuitablecoatingswithhigh electrocatalyticperformancefortheHER.

Thelowestcellvoltageasafunctionofcurrentdensitywasreached withtheIrO2coatingbothattheanodeandthecathode.Withthestain- lesssteelelectrodes,thesamevoltagelevelwasachievedatroughly 50%lowercurrentdensitiescomparedwiththeIrO2-coatedelectrodes.

(10)

G. Givirovskiy et al. Heliyon 5 (2019) e01690

Fig. 11.Separatedovervoltagesforthewaterelectrolysisexperimentsofthebestelectrodematerialcombinations:(a)platinum-platinum(Pt–Pt),and(b)iridium- iridium(IrO2–IrO2).

Despite this, the stainless steel can be considered a potential cost- effectivesubstratematerialforpreparationofcoatingsinelectrobiore- actorswithinsituelectrolysisofmedia.

Adetailedenergyefficiencyanalysisofthebioelectrochemicalsys- temandananalysisoftheeffectsoftheinsituwaterelectrolysison themicrobialgrowth,e.g.maximumallowablecurrentdensity,willbe conductedinthefurtherresearchintothetopic.

Declarations

Authorcontributionstatement

GeorgyGivirovskiy,VesaRuuskanen,JeroAhola,LeoOjala,Michael Lienemann,PetteriKokkonen:Conceivedanddesignedtheexperiments;

Performed theexperiments;Analyzedandinterpretedthedata;Con- tributedreagents,materials,analysistoolsordata;Wrotethepaper.

Fundingstatement

This work was supported by Finnish Academy of Science for

“MOPED–MicrobialOilandProteinsfrom Airby Electricity-Driven Microbes”projectfundingundernumber295866.

Competingintereststatement

Theauthorsdeclarenoconflictofinterest.

Additionalinformation

Noadditionalinformationisavailableforthispaper.

References

[1]A.Ursúa,L.Gandía,P.Sanchis,Hydrogenproductionfromwaterelectrolysis:cur- rentstatusandfuturetrends,Proc.IEEE100 (2)(2012)410–426.

[2]I.Dincer,C.Acar,Reviewandevaluationofhydrogenproductionmethodsforbetter sustainability,Int.J.Hydrog.Energy40 (34)(2014)11094–11111.

[3]T.Kousksou,P.Bruel,A.Jamil,T.ElRhafiki,Y.Zeraouli,Energystorage:applica- tionsandchallenges,Sol.EnergyMater.Sol.Cells120 (PARTA)(2014)59–80.

[4] UnitedNationsEnvironmentProgramme,Thehydrogeneconomy:anon-technical review, https://www.unenvironment.org/resources/report/hydrogen-economy- non-technical-review,2006.

[5]S.E.Hosseini,M.A.Wahid,Hydrogenproductionfromrenewableandsustainable energyresources:promisinggreenenergycarrierforcleandevelopment,Renew.

Sustain.EnergyRev.57(2016)850–866.

[6]M.Lehner,R.Tichler,H.Steinmüller,M.Koppe,Power-to-Gas:Technologyand BusinessModels,SpringerInternationalPublishing,NewYork,2014.

[7]Y.Cheng,S.P.Jiang,Advancesinelectrocatalystsforoxygenevolutionreactionof waterelectrolysis-frommetaloxidestocarbonnanotubes,Prog.Nat.Sci.25 (6) (2015)545–553.

[8] K.P.Nevin,T.L. Woodard,A.E. Franks,Z.M. Summers,D.R.Lovley,Microbial electrosynthesis:feedingmicrobeselectricitytoconvertcarbondioxideandwa- tertomulticarbonextracellularorganiccompounds,mBio1 (2)(2010),http://

mbio.asm.org/content/1/2/e00103-10.full.pdf.

[9]S.Bajracharya,M.Sharma,G.Mohanakrishna,X.DominguezBenneton,D.P.Strik, P.M.Sarma,D.Pant,Anoverviewonemergingbioelectrochemicalsystems(BESs):

technologyforsustainableelectricity,wasteremediation,resourcerecovery,chem- icalproductionandbeyond,Renew.Energy98(2016)153–170.

[10]G.Kumar,R.G.Saratale,A.Kadier,P.Sivagurunathan,G.Zhen,S.H.Kim,G.D.

Saratale,Areviewonbio-electrochemicalsystems(BESs)forthesyngasandvalue addedbiochemicalsproduction,Chemosphere177(2017)84–92.

[11]J.Yu,A.Dow,S.Pingali,Theenergyefficiencyofcarbondioxidefixationbya hydrogen-oxidizingbacterium,Int.J.Hydrog.Energy38 (21)(2013)8683–8690.

[12]T.G.Volova,V.A.Barashkov,Characteristicsofproteinssynthesizedbyhydrogen- oxidizingmicroorganisms,Appl.Biochem.Microbiol.46 (6)(2010)574–579.

[13]S.Matassa,W.Verstraete,I.Pikaar,N.Boon,Autotrophicnitrogenassimilationand carboncaptureformicrobialproteinproductionbyanovelenrichmentofhydrogen- oxidizingbacteria,WaterRes.101(2016)137–146.

[14]S.Matassa,N.Boon,I.Pikaar,W.Verstraete,Microbialprotein:futuresustain- ablefoodsupplyroutewithlowenvironmentalfootprint,Microb.Biotechnol.9 (5) (2016)568–575.

[15]F.Oesterholt,S.Matassa,L.Palmen,K.Roest,W.Verstraete,Pilotscaleproduction ofsinglecellproteinsusingthepower-to-proteinconceptfutureglobalchallenges, in:2ndInternationalResourceRecoveryConference,2018,pp. 1–16.

[16]J.P.Torella,C.J.Gagliardi,J.S.Chen,D.K.Bediako,B.Colón,J.C.Way,P.A.Sil- ver,D.G.Nocera,Efficientsolar-to-fuelsproductionfromahybridmicrobial–water- splittingcatalystsystem,Proc.Natl.Acad.Sci.112 (8)(2015)2337–2342.

[17]C.Liu,M.Ziesack,P.A.Silver,Watersplitting –biosyntheticsystemwithCO2reduc- tionefficienciesexceedingphotosynthesis,Science352 (6290)(2016)1210–1213.

[18]C.Liu,K.K.Sakimoto,B.C.Colón,P.A.Silver,D.G.Nocera,Ambientnitrogenreduc- tioncycleusingahybridinorganic–biologicalsystem,Proc.Natl.Acad.Sci.114 (25) (2017)6450–6455.

[19]C.Liu,B.E.Colón,P.A.Silver,D.G.Nocera,Solar-poweredCO2reductionbyahy- bridbiologicalinorganicsystem,J.Photochem.Photobiol.A,Chem.358(2018) 411–415.

[20] M.Wuokko,ChemolithoautotrophicGrowthofKnallgasBacteriainanElectrobiore- actorUsinginsituWaterElectrolysis,Master’sthesis,2017,http://urn.fi/URN:NBN: :aalto-201705114594.

[21]R.Moreira,M.K.Schütz,M.Libert,B.Tribollet,V.Vivier,Fluenceofhydrogen- oxidizingbacteriaonthecorrosionoflowcarbonsteel:localelectrochemicalinves- tigations,Bioelectrochemistry97(2014)69–75.

[22] Sandvik, Microbiologically influenced corrosion (MIC), https://www.materials. sandvik/fi-fi/tietopankki/korroosiotietoja/wet-corrosion/microbiologically- influenced-corrosion-mic/,2019.(Accessed 4April2019).

[23]M.Schalenbach,A.R.Zeradjanin,O.Kasian,S.Cherevko,Aperspectiveonlow- temperaturewaterelectrolysischallengesinalkalineandacidictechnology,Int.J.

Electrochem.Sci.13(2018)1173–1226.

[24]K.H.Kim,J.Y.Zheng,W.Shin,Y.S.Kang,PreparationofdendriticNiFefilmsby electrodepositionforoxygenevolution,RSCAdv.2(2012)4759–4767.

[25]M.Schalenbach,M.Carmo,D.Fritz,J.Mergel,D.Stolten,PressurizedPEMwater electrolysis:efficiencyandgascrossover,Int.J.Hydrog.Energy38 (35)(2013) 14921–14933.

[26]A.Awasthi,K.Scott,S.Basu,Dynamicmodelingandsimulationofaprotonex- changemembraneelectrolyzerforhydrogenproduction,Int.J.Hydrog.Energy 36 (22)(2011)14779–14786.

[27]K.Harrison,E.Hernándec-Pacheco,M.Mann,H.Salehfar,Semiempiricalmodelfor determiningPEMelectrolyzerstackcharacteristics,J.FuelCellSci.Technol.3 (2) (2005)220–223.

[28]R.LeRoy,C.Bowen,D.LeRoy,Thethermodynamicsofaqueouswaterelectrolysis, J.Electrochem.Soc.127 (9)(1980)1954–1962.

9

(11)

[29]J.Larminie,A.Dicks,FuelCellSystemsExplained,JohnWiley&SonsLtd.,England, 2003.

[30]C.Biaku,N.Dale,M.Mann,H.Salehfar,A.Peters,T.Han,Asemiempiricalstudyof thetemperaturedependenceoftheanodechargetransfercoefficientofa6 kWPEM electrolyzer,Int.J.Hydrog.Energy33 (16)(2008)4247–4254.

[31]B.Decourt,B.Lajoie,R.Debarre,O.Soupa,TheHydrogen-BasedEnergyConversion FactBook,TheSBCEnergyInstitute,2014.

Viittaukset

LIITTYVÄT TIEDOSTOT

Ydinvoimateollisuudessa on aina käytetty alihankkijoita ja urakoitsijoita. Esimerkiksi laitosten rakentamisen aikana suuri osa työstä tehdään urakoitsijoiden, erityisesti

Hä- tähinaukseen kykenevien alusten ja niiden sijoituspaikkojen selvittämi- seksi tulee keskustella myös Itäme- ren ympärysvaltioiden merenkulku- viranomaisten kanssa.. ■

Mansikan kauppakestävyyden parantaminen -tutkimushankkeessa kesän 1995 kokeissa erot jäähdytettyjen ja jäähdyttämättömien mansikoiden vaurioitumisessa kuljetusta

Jätevesien ja käytettyjen prosessikylpyjen sisältämä syanidi voidaan hapettaa kemikaa- lien lisäksi myös esimerkiksi otsonilla.. Otsoni on vahva hapetin (ks. taulukko 11),

Keskustelutallenteen ja siihen liittyvien asiakirjojen (potilaskertomusmerkinnät ja arviointimuistiot) avulla tarkkailtiin tiedon kulkua potilaalta lääkärille. Aineiston analyysi

Työn merkityksellisyyden rakentamista ohjaa moraalinen kehys; se auttaa ihmistä valitsemaan asioita, joihin hän sitoutuu. Yksilön moraaliseen kehyk- seen voi kytkeytyä

Aineistomme koostuu kolmen suomalaisen leh- den sinkkuutta käsittelevistä jutuista. Nämä leh- det ovat Helsingin Sanomat, Ilta-Sanomat ja Aamulehti. Valitsimme lehdet niiden

Istekki Oy:n lää- kintätekniikka vastaa laitteiden elinkaaren aikaisista huolto- ja kunnossapitopalveluista ja niiden dokumentoinnista sekä asiakkaan palvelupyynnöistä..