• Ei tuloksia

(Centered) Hardy–Littlewood maximal function

N/A
N/A
Info
Lataa
Protected

Academic year: 2023

Jaa "(Centered) Hardy–Littlewood maximal function"

Copied!
64
0
0

Kokoteksti

(1)

Regularity of the local fractional maximal function

Janne Korvenp¨a¨a

June 12 2015

Workshop on harmonic analysis and partial differential equations Aalto University

Based on a joint work with T. Heikkinen, J. Kinnunen and H. Tuominen.

1 / 16

(2)

(Centered) Hardy–Littlewood maximal function

2 / 16

(3)

(Centered) Hardy–Littlewood maximal function

Mu(x) = sup

r>0

Z

B(x,r)

|u(y)| dy, x ∈ Rn.

2 / 16

(4)

(Centered) Hardy–Littlewood maximal function

Mu(x) = sup

r>0

Z

B(x,r)

|u(y)| dy, x ∈ Rn.

By Hardy–Littlewood–Wiener theorem, kMukLp(Rn) ≤ CkukLp(Rn), p > 1.

2 / 16

(5)

(Centered) Hardy–Littlewood maximal function

Mu(x) = sup

r>0

Z

B(x,r)

|u(y)| dy, x ∈ Rn.

By Hardy–Littlewood–Wiener theorem, kMukLp(Rn) ≤ CkukLp(Rn), p > 1.

If u ∈ W 1,p(Rn), then |DMu(x)| ≤ M |Du|(x) for a.e. x ∈ Rn [J. Kinnunen, 1997].

2 / 16

(6)

(Centered) Hardy–Littlewood maximal function

Mu(x) = sup

r>0

Z

B(x,r)

|u(y)| dy, x ∈ Rn.

By Hardy–Littlewood–Wiener theorem, kMukLp(Rn) ≤ CkukLp(Rn), p > 1.

If u ∈ W 1,p(Rn), then |DMu(x)| ≤ M |Du|(x) for a.e. x ∈ Rn [J. Kinnunen, 1997].

Consequently, M: W 1,p(Rn) → W 1,p(Rn).

2 / 16

(7)

Local Hardy–Littlewood maximal function

3 / 16

(8)

Local Hardy–Littlewood maximal function

Mu(x) = sup Z

B(x,r)

|u(y)| dy, x ∈ Ω ⊂ Rn, where the supremum is taken over {0 < r < dist(x, Rn \ Ω)}.

3 / 16

(9)

Local Hardy–Littlewood maximal function

Mu(x) = sup Z

B(x,r)

|u(y)| dy, x ∈ Ω ⊂ Rn, where the supremum is taken over {0 < r < dist(x, Rn \ Ω)}.

As in the global case, kMukLp(Ω) ≤ CkukLp(Ω), p > 1.

3 / 16

(10)

Local Hardy–Littlewood maximal function

Mu(x) = sup Z

B(x,r)

|u(y)| dy, x ∈ Ω ⊂ Rn, where the supremum is taken over {0 < r < dist(x, Rn \ Ω)}.

As in the global case, kMukLp(Ω) ≤ CkukLp(Ω), p > 1.

If u ∈ W 1,p(Ω), then |DMu(x)| ≤ 2M|Du|(x) for a.e. x ∈ Ω [J. Kinnunen, P. Lindqvist, 1998].

3 / 16

(11)

Local Hardy–Littlewood maximal function

Mu(x) = sup Z

B(x,r)

|u(y)| dy, x ∈ Ω ⊂ Rn, where the supremum is taken over {0 < r < dist(x, Rn \ Ω)}.

As in the global case, kMukLp(Ω) ≤ CkukLp(Ω), p > 1.

If u ∈ W 1,p(Ω), then |DMu(x)| ≤ 2M|Du|(x) for a.e. x ∈ Ω [J. Kinnunen, P. Lindqvist, 1998].

Consequently, M : W 1,p(Ω) → W 1,p(Ω).

3 / 16

(12)

Fractional maximal function; Sobolev spaces

4 / 16

(13)

Fractional maximal function; Sobolev spaces

Mαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dy, x ∈ Rn, α ≥ 0.

4 / 16

(14)

Fractional maximal function; Sobolev spaces

Mαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dy, x ∈ Rn, α ≥ 0.

Boundedness from Lp to Lp: kMαukLp(Rn) ≤ CkukLp(Rn), p > 1, 0 ≤ α < n/p, p = np/(n − αp).

4 / 16

(15)

Fractional maximal function; Sobolev spaces

Mαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dy, x ∈ Rn, α ≥ 0.

Boundedness from Lp to Lp: kMαukLp(Rn) ≤ CkukLp(Rn), p > 1, 0 ≤ α < n/p, p = np/(n − αp).

If u ∈ W 1,p(Rn) and 0 ≤ α < n/p, then |DMαu(x)| ≤ Mα|Du|(x) for a.e. x ∈ Rn [J. Kinnunen, E. Saksman, 2003].

4 / 16

(16)

Fractional maximal function; Sobolev spaces

Mαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dy, x ∈ Rn, α ≥ 0.

Boundedness from Lp to Lp: kMαukLp(Rn) ≤ CkukLp(Rn), p > 1, 0 ≤ α < n/p, p = np/(n − αp).

If u ∈ W 1,p(Rn) and 0 ≤ α < n/p, then |DMαu(x)| ≤ Mα|Du|(x) for a.e. x ∈ Rn [J. Kinnunen, E. Saksman, 2003].

Consequently, Mα : W1,p(Rn) → W 1,p(Rn).

4 / 16

(17)

Fractional maximal function; Lebesgue spaces

Mαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dy, x ∈ Rn, α ≥ 0.

5 / 16

(18)

Fractional maximal function; Lebesgue spaces

Mαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dy, x ∈ Rn, α ≥ 0.

Even if we only assume u ∈ Lp(Rn), we get an estimate for |DMαu|.

5 / 16

(19)

Fractional maximal function; Lebesgue spaces

Mαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dy, x ∈ Rn, α ≥ 0.

Even if we only assume u ∈ Lp(Rn), we get an estimate for |DMαu|.

If u ∈ Lp(Rn) and 1 ≤ α < n/p, then |DMαu(x)| ≤ CMα1 u(x) for a.e. x ∈ Rn [J. Kinnunen, E. Saksman, 2003].

5 / 16

(20)

Fractional maximal function; Lebesgue spaces

Mαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dy, x ∈ Rn, α ≥ 0.

Even if we only assume u ∈ Lp(Rn), we get an estimate for |DMαu|.

If u ∈ Lp(Rn) and 1 ≤ α < n/p, then |DMαu(x)| ≤ CMα1 u(x) for a.e. x ∈ Rn [J. Kinnunen, E. Saksman, 2003].

Consequently, |DMαu| ∈ Lq(Rn), q = np/(n − (α − 1)p).

5 / 16

(21)

Local fractional maximal function

6 / 16

(22)

Local fractional maximal function

Mα,Ωu(x) = sup rα Z

B(x,r)

|u(y)| dy, x ∈ Ω ⊂ Rn, α ≥ 0, where the supremum is taken over {0 < r < dist(x, Rn \ Ω)}.

6 / 16

(23)

Local fractional maximal function

Mα,Ωu(x) = sup rα Z

B(x,r)

|u(y)| dy, x ∈ Ω ⊂ Rn, α ≥ 0, where the supremum is taken over {0 < r < dist(x, Rn \ Ω)}.

As in the global case: kMα,ΩukLp(Ω) ≤ CkukLp(Ω), p > 1, 0 ≤ α < n/p, p = np/(n − αp).

6 / 16

(24)

Local fractional maximal function

Mα,Ωu(x) = sup rα Z

B(x,r)

|u(y)| dy, x ∈ Ω ⊂ Rn, α ≥ 0, where the supremum is taken over {0 < r < dist(x, Rn \ Ω)}.

As in the global case: kMα,ΩukLp(Ω) ≤ CkukLp(Ω), p > 1, 0 ≤ α < n/p, p = np/(n − αp).

One might expect that similar estimates hold for the weak gradient as in the global case.

6 / 16

(25)

Local fractional maximal function

Mα,Ωu(x) = sup rα Z

B(x,r)

|u(y)| dy, x ∈ Ω ⊂ Rn, α ≥ 0, where the supremum is taken over {0 < r < dist(x, Rn \ Ω)}.

As in the global case: kMα,ΩukLp(Ω) ≤ CkukLp(Ω), p > 1, 0 ≤ α < n/p, p = np/(n − αp).

One might expect that similar estimates hold for the weak gradient as in the global case.

However, there will be extra terms occurring in our estimates.

6 / 16

(26)

Spherical (fractional) maximal function

7 / 16

(27)

Spherical (fractional) maximal function

Sαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dHn−1(y), x ∈ Rn, α ≥ 0,

7 / 16

(28)

Spherical (fractional) maximal function

Sαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dHn−1(y), x ∈ Rn, α ≥ 0, Local version appears in our estimates for |DMα,Ωu|.

7 / 16

(29)

Spherical (fractional) maximal function

Sαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dHn−1(y), x ∈ Rn, α ≥ 0, Local version appears in our estimates for |DMα,Ωu|.

Boundedness from Lp to Lp: if p > n/(n − 1) and 0 ≤ α < minn

n−1

p , n − (n−2n1)po

, then kSαukLp(Rn) ≤ CkukLp(Rn)

[E.M. Stein, 1976] (α = 0, n ≥ 3), [J. Bourgain, 1986] (α = 0, n = 2),

[W. Schlag, C. Sogge, 1997] (α > 0, n ≥ 3), [W. Schlag, 1997] (α > 0, n = 2).

7 / 16

(30)

Spherical (fractional) maximal function

Sαu(x) = sup

r>0

rα Z

B(x,r)

|u(y)| dHn−1(y), x ∈ Rn, α ≥ 0, Local version appears in our estimates for |DMα,Ωu|.

Boundedness from Lp to Lp: if p > n/(n − 1) and 0 ≤ α < minn

n−1

p , n − (n−2n1)po

, then kSαukLp(Rn) ≤ CkukLp(Rn)

[E.M. Stein, 1976] (α = 0, n ≥ 3), [J. Bourgain, 1986] (α = 0, n = 2),

[W. Schlag, C. Sogge, 1997] (α > 0, n ≥ 3), [W. Schlag, 1997] (α > 0, n = 2).

The same estimate also holds for the local version Sα,Ωu.

7 / 16

(31)

Local fractional maximal function; Lebesgue spaces

8 / 16

(32)

Local fractional maximal function; Lebesgue spaces

Theorem 1 (Heikkinen, Kinnunen, K, Tuominen)

Let n ≥ 2, p > n/(n − 1) and let 1 ≤ α < minn

n−1

p , n − (n−2n1)po

+ 1. If u ∈ Lp(Ω), then |DMα,Ωu| ∈ Lq(Ω) with q = np/(n − (α − 1)p).

Moreover,

|DMα,Ωu(x)| ≤ C Mα1,Ωu(x) + Sα1,Ωu(x)

for almost every x ∈ Ω, where the constant C depends only on n.

8 / 16

(33)

Local fractional maximal function; Lebesgue spaces

Theorem 1 (Heikkinen, Kinnunen, K, Tuominen)

Let n ≥ 2, p > n/(n − 1) and let 1 ≤ α < minn

n−1

p , n − (n−2n1)po

+ 1. If u ∈ Lp(Ω), then |DMα,Ωu| ∈ Lq(Ω) with q = np/(n − (α − 1)p).

Moreover,

|DMα,Ωu(x)| ≤ C Mα1,Ωu(x) + Sα1,Ωu(x)

for almost every x ∈ Ω, where the constant C depends only on n.

Additional term containing local spherical fractional function compared to the global case.

8 / 16

(34)

Main idea of the proof

9 / 16

(35)

Main idea of the proof

1. When u ∈ Lp(Ω) ∩ C(Ω), estimate

|Dutα(x)| ≤ C Mα−1,Ωu(x) + Sα−1,Ωu(x)

, 0 < t < 1, (1) for fractional average functions

utα(x) = (tδ(x))α Z

B(x,tδ(x))

u(y)dy, δ(x) = dist(x, Rn \ Ω).

9 / 16

(36)

Main idea of the proof

1. When u ∈ Lp(Ω) ∩ C(Ω), estimate

|Dutα(x)| ≤ C Mα−1,Ωu(x) + Sα−1,Ωu(x)

, 0 < t < 1, (1) for fractional average functions

utα(x) = (tδ(x))α Z

B(x,tδ(x))

u(y)dy, δ(x) = dist(x, Rn \ Ω).

2. When u ∈ Lp(Ω), estimate (1) by approximation.

9 / 16

(37)

Main idea of the proof

1. When u ∈ Lp(Ω) ∩ C(Ω), estimate

|Dutα(x)| ≤ C Mα−1,Ωu(x) + Sα−1,Ωu(x)

, 0 < t < 1, (1) for fractional average functions

utα(x) = (tδ(x))α Z

B(x,tδ(x))

u(y)dy, δ(x) = dist(x, Rn \ Ω).

2. When u ∈ Lp(Ω), estimate (1) by approximation.

3. Local fractional maximal function can be approximated pointwise by vk = max1≤j≤k |u|αtj, where tj is an enumeration of the rationals

between 0 and 1.

9 / 16

(38)

Main idea of the proof

1. When u ∈ Lp(Ω) ∩ C(Ω), estimate

|Dutα(x)| ≤ C Mα−1,Ωu(x) + Sα−1,Ωu(x)

, 0 < t < 1, (1) for fractional average functions

utα(x) = (tδ(x))α Z

B(x,tδ(x))

u(y)dy, δ(x) = dist(x, Rn \ Ω).

2. When u ∈ Lp(Ω), estimate (1) by approximation.

3. Local fractional maximal function can be approximated pointwise by vk = max1≤j≤k |u|αtj, where tj is an enumeration of the rationals

between 0 and 1.

4. We can extract a subsequence {vkj } such that |Dvkj| converges weakly to |DMα,Ωu| in Lq(Ω) as j → ∞.

9 / 16

(39)

Mapping properties; Lebesgue spaces

10 / 16

(40)

Mapping properties; Lebesgue spaces

If Ω has finite measure, then Mα,Ω : Lp(Ω) → W 1,q(Ω).

10 / 16

(41)

Mapping properties; Lebesgue spaces

If Ω has finite measure, then Mα,Ω : Lp(Ω) → W 1,q(Ω).

Corollary 2

Let n ≥ 2, p > n/(n − 1) and let 1 ≤ α < n/p. If |Ω| < ∞ and u ∈ Lp(Ω), then Mα,Ωu ∈ W 1,q(Ω) with q = np/(n − (α − 1)p).

10 / 16

(42)

Mapping properties; Lebesgue spaces

If Ω has finite measure, then Mα,Ω : Lp(Ω) → W 1,q(Ω).

Corollary 2

Let n ≥ 2, p > n/(n − 1) and let 1 ≤ α < n/p. If |Ω| < ∞ and u ∈ Lp(Ω), then Mα,Ωu ∈ W 1,q(Ω) with q = np/(n − (α − 1)p).

Moreover, Mα,Ωu has zero boundary values in Sobolev’s sense since Z

Mα,Ωu(x) dist(x, Rn \ Ω)

q

dx < ∞.

10 / 16

(43)

Mapping properties; Lebesgue spaces

If Ω has finite measure, then Mα,Ω : Lp(Ω) → W 1,q(Ω).

Corollary 2

Let n ≥ 2, p > n/(n − 1) and let 1 ≤ α < n/p. If |Ω| < ∞ and u ∈ Lp(Ω), then Mα,Ωu ∈ W 1,q(Ω) with q = np/(n − (α − 1)p).

Moreover, Mα,Ωu has zero boundary values in Sobolev’s sense since Z

Mα,Ωu(x) dist(x, Rn \ Ω)

q

dx < ∞.

Corollary 3

Let n ≥ 2, p > n/(n − 1) and let 1 ≤ α < n/p. If |Ω| < ∞ and u ∈ Lp(Ω), then Mα,Ωu ∈ W01,q(Ω) with q = np/(n − (α − 1)p).

10 / 16

(44)

Local fractional maximal function; Sobolev spaces

11 / 16

(45)

Local fractional maximal function; Sobolev spaces

Local fractional maximal function of a Sobolev function is not necessarily smoother than of an arbitrary function in Lp(Ω).

11 / 16

(46)

Local fractional maximal function; Sobolev spaces

Local fractional maximal function of a Sobolev function is not necessarily smoother than of an arbitrary function in Lp(Ω).

Theorem 4 (Heikkinen, Kinnunen, K, Tuominen)

Let n ≥ 2, 1 < p < n and let 1 ≤ α < n/p. If |Ω| < ∞ and u ∈ W 1,p(Ω), then Mα,Ωu ∈ W 1,q(Ω) with q = np/(n − (α − 1)p). Moreover,

|DMα,Ωu(x)| ≤ 2Mα,Ω|Du|(x) + αMα1,Ωu(x) for almost every x ∈ Ω.

11 / 16

(47)

Local fractional maximal function; Sobolev spaces

Local fractional maximal function of a Sobolev function is not necessarily smoother than of an arbitrary function in Lp(Ω).

Theorem 4 (Heikkinen, Kinnunen, K, Tuominen)

Let n ≥ 2, 1 < p < n and let 1 ≤ α < n/p. If |Ω| < ∞ and u ∈ W 1,p(Ω), then Mα,Ωu ∈ W 1,q(Ω) with q = np/(n − (α − 1)p). Moreover,

|DMα,Ωu(x)| ≤ 2Mα,Ω|Du|(x) + αMα1,Ωu(x) for almost every x ∈ Ω.

However, for regular domains we obtain the same regularity as in Rn.

11 / 16

(48)

Local fractional maximal function; Sobolev spaces

Local fractional maximal function of a Sobolev function is not necessarily smoother than of an arbitrary function in Lp(Ω).

Theorem 4 (Heikkinen, Kinnunen, K, Tuominen)

Let n ≥ 2, 1 < p < n and let 1 ≤ α < n/p. If |Ω| < ∞ and u ∈ W 1,p(Ω), then Mα,Ωu ∈ W 1,q(Ω) with q = np/(n − (α − 1)p). Moreover,

|DMα,Ωu(x)| ≤ 2Mα,Ω|Du|(x) + αMα1,Ωu(x) for almost every x ∈ Ω.

However, for regular domains we obtain the same regularity as in Rn.

Corollary 5

If Ω is bounded with a C1-boundary, then Theorem 4 holds with a better exponent p = np/(n − αp) instead of q.

11 / 16

(49)

Example 1

12 / 16

(50)

Example 1

In general, the estimate

|DMα,Ωu(x)| ≤ CMα1,Ωu(x) for a.e. x ∈ Ω (2) cannot hold in the local case; Sα1,Ωu(x) is needed in Theorem 1.

12 / 16

(51)

Example 1

In general, the estimate

|DMα,Ωu(x)| ≤ CMα1,Ωu(x) for a.e. x ∈ Ω (2) cannot hold in the local case; Sα1,Ωu(x) is needed in Theorem 1.

Let n ≥ 2 and Ω = B(0, 1) ⊂ Rn. Let 1 < p < ∞, α ≥ 1 and let 0 < β < 1. Then the function u,

u(x) = (1 − |x|)β/p, belongs to Lp(Ω).

12 / 16

(52)

Example 1

In general, the estimate

|DMα,Ωu(x)| ≤ CMα1,Ωu(x) for a.e. x ∈ Ω (2) cannot hold in the local case; Sα1,Ωu(x) is needed in Theorem 1.

Let n ≥ 2 and Ω = B(0, 1) ⊂ Rn. Let 1 < p < ∞, α ≥ 1 and let 0 < β < 1. Then the function u,

u(x) = (1 − |x|)β/p, belongs to Lp(Ω).

When |x| is small enough, the maximizing radius for Mα,Ωu(x) is the largest possible, i.e. 1 − |x|.

12 / 16

(53)

Example 1

In general, the estimate

|DMα,Ωu(x)| ≤ CMα1,Ωu(x) for a.e. x ∈ Ω (2) cannot hold in the local case; Sα1,Ωu(x) is needed in Theorem 1.

Let n ≥ 2 and Ω = B(0, 1) ⊂ Rn. Let 1 < p < ∞, α ≥ 1 and let 0 < β < 1. Then the function u,

u(x) = (1 − |x|)β/p, belongs to Lp(Ω).

When |x| is small enough, the maximizing radius for Mα,Ωu(x) is the largest possible, i.e. 1 − |x|.

For those x, |DMα,Ωu(x)| consists of an average term over a ball and one over a sphere, where the former is uniformly bounded and the

latter tends to ∞ as |x| → 0.

12 / 16

(54)

Example 2

13 / 16

(55)

Example 2

There are domains Ω ⊂ Rn, for which Mα,Ω(W 1,p(Ω)) 6⊂ W 1,ˆq(Ω) when ˆq > q = np/(n − (α − 1)p); The exponent q in Theorem 4 is sharp.

13 / 16

(56)

Example 2

There are domains Ω ⊂ Rn, for which Mα,Ω(W 1,p(Ω)) 6⊂ W 1,ˆq(Ω) when ˆq > q = np/(n − (α − 1)p); The exponent q in Theorem 4 is sharp.

Let n ≥ 2, α ≥ 1 and (α − 1)p < n. Let Ω = int [

k=1

Qk ∪ Ck ,

Qk = [k, k + 2−k]×[0, 2−k]n−1, Ck = [k + 2−k, k + 1]×[0, 2−3k]n−1.

13 / 16

(57)

Example 2

There are domains Ω ⊂ Rn, for which Mα,Ω(W 1,p(Ω)) 6⊂ W 1,ˆq(Ω) when ˆq > q = np/(n − (α − 1)p); The exponent q in Theorem 4 is sharp.

Let n ≥ 2, α ≥ 1 and (α − 1)p < n. Let Ω = int [

k=1

Qk ∪ Ck ,

Qk = [k, k + 2−k]×[0, 2−k]n−1, Ck = [k + 2−k, k + 1]×[0, 2−3k]n−1. For every ˆq > q = np/(n − (α − 1)p) we define a function u such

that u = 2knp on Qk and u increases linearly from 2knp to 2(k+1)np on Ck, where ˆp = nˆq/(n + (α − 1)ˆq) > p.

13 / 16

(58)

Example 2

There are domains Ω ⊂ Rn, for which Mα,Ω(W 1,p(Ω)) 6⊂ W 1,ˆq(Ω) when ˆq > q = np/(n − (α − 1)p); The exponent q in Theorem 4 is sharp.

Let n ≥ 2, α ≥ 1 and (α − 1)p < n. Let Ω = int [

k=1

Qk ∪ Ck ,

Qk = [k, k + 2−k]×[0, 2−k]n−1, Ck = [k + 2−k, k + 1]×[0, 2−3k]n−1. For every ˆq > q = np/(n − (α − 1)p) we define a function u such

that u = 2knp on Qk and u increases linearly from 2knp to 2(k+1)np on Ck, where ˆp = nˆq/(n + (α − 1)ˆq) > p.

Then u ∈ W 1,p(Ω) but

|DMα,Ωu| 6∈ Lqˆ(Ω).

13 / 16

(59)

Example 3

14 / 16

(60)

Example 3

In the case 0 < α < 1, Mα,Ωu can be very irregular, even when u is a constant function; The lower bound α ≥ 1 is sharp in Theorems 1 and 4.

14 / 16

(61)

Example 3

In the case 0 < α < 1, Mα,Ωu can be very irregular, even when u is a constant function; The lower bound α ≥ 1 is sharp in Theorems 1 and 4.

Let n ≥ 1, 0 < α < 1 and r > 0. Let β be an integer satisfying β ≥ n/((1 − α)r), and let

Ω = B(0, 2) \ [

k1

Sk, Sk = {2−k + j2(1+β)k : j = 1, . . . , 2βk}n.

14 / 16

(62)

Example 3

In the case 0 < α < 1, Mα,Ωu can be very irregular, even when u is a constant function; The lower bound α ≥ 1 is sharp in Theorems 1 and 4.

Let n ≥ 1, 0 < α < 1 and r > 0. Let β be an integer satisfying β ≥ n/((1 − α)r), and let

Ω = B(0, 2) \ [

k1

Sk, Sk = {2−k + j2(1+β)k : j = 1, . . . , 2βk}n. Then |DMα,Ωu| for u ≡ 1 does not belong to Lr(Ω).

14 / 16

(63)

References

T. Heikkinen, J. Kinnunen, J. Korvenp¨a¨a and H. Tuominen, Regularity of the local fractional maximal function, Ark. Mat.

53 (2015), 127-154.

J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Anal. Math. 47 (1986), 69–85.

J. Kinnunen, The Hardy–Littlewood maximal function of a Sobolev-function, Israel J.Math. 100 (1997), 117–124.

J. Kinnunen and P. Lindqvist, The derivative of the maximal function, J. Reine Angew. Math. 503 (1998), 161–167.

J. Kinnunen and E. Saksman, Regularity of the fractional maximal function, Bull. London Math. Soc. 35 (2003), no. 4, 529–535.

W. Schlag, A generalization of Bourgain’s circular maximal theorem J. Amer. Math. Soc. 10, no. 1 (1997), 103–122.

W. Schlag and C. Sogge, Local smoothing estimates related to the circular maximal theorem, Math. Res. Lett. 4 (1997), no.1, 1–15.

E.M. Stein, Maximal functions. I. Spherical means, Proc. Nat. Acad.

Sci. U.S.A. 73 (1976), no. 7, 2174–2175.

15 / 16

(64)

THANK YOU

FOR YOUR ATTENTION

16 / 16

Viittaukset

LIITTYVÄT TIEDOSTOT

Regularity of the local Hardy–Littlewood maximal function of a Sobolev function on an open Ω ⊂ R n was first studied by Kinnunen and Lindqvist [14], and a local variant of

An anonymous function (or, more precisely, the function handle pointing at an anonymous function) is stored like any other value in the current workspace: In a variable (as we

we prove (1.2) for the uncentered Hardy-Littlewood maximal function of characteristic functions, in [Wei20a] we prove it for the dyadic maximal operator for general functions, and

(2) In contrast with the proof of the Lebesgue differentiation theorem (Theo- rem 2.23) based on the Hardy-Littlewood maximal function, this proof does not depend on the density

In other words, the Muckenhoupt condition characterizes weights for which a weighted weak type estimate holds for the Hardy-Littlewood maximal

Matlab includes a function function fminbnd that uses golden section search and parabolic interpolation to find a local minimum of a real-valued function of a real variable..

In this talk we consider smoothing properties of the local fractional maximal operator, which is

Endpoint regularity of the dyadic and the fractional maximal function.