• Ei tuloksia

View of Detection of bovine foetal DNA from amniotic fluid using the polymerase chain reaction

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "View of Detection of bovine foetal DNA from amniotic fluid using the polymerase chain reaction"

Copied!
6
0
0

Kokoteksti

(1)

Vol. 5(1996):541-546.

Detection of bovine foetal DNA from amniotic fluid using the polymerase chain reaction

Jaana Peippo and Peter Bredbacka

AgriculturalResearch CentreofFinland, InstituteofAnimalProduction, FIN-31600 Jokioinen, Finland, e-mail: jaana.peippo@mtt.fi

The aims of thisstudy were to evaluate the amount of amniotic fluidrequired fordiagnosis of sex, milkproteinand microsatellite variantsby polymerase chain reaction (PCR)and to review methods for isolating DNAfrom the amniotic cells. Uterine and foetal tissues wereused ascontrols,andmilk protein and microsatellite variants to check contamination of maternal cellsin thePCR, The results showed that thesamplesdo not need to bepurifiedafterDNArelease from the amniotic cells and that aslittleas0.5-1.5 ml of amniotic fluid is sufficient forreliable diagnosis byPCR.

Key words: PCR, amnioticcells,sex determination,kappa-casein, microsatellites

ntroduction

The polymerase chain reaction (PCR) (Saikiet al. 1988) offers apowerful tool for foetal diag- nosis, allowing detection of small quantities of foetal cells from amniotic fluid without prior cell culture. In humans, foetal cells from the first trimester amniotic fluid have been widely used for various PCR-based diagnosticpurposes in- cluding determination of sex (Pinckert et al.

1989, Kurauchi etal. 1992),solving the ques- tion of paternity (Nata et al. 1993), and detec- tion of pathogenic organisms such as toxoplas- ma gondii (Dupouy-Camet etal. 1990, Grover etal. 1990)orhuman pavrovirus 819(Kochand Adler 1990)and for estimation of chromosome

21 copy number by quantitative PCR (von Egg- eling etal. 1993). Methods for PCR screening ofavariety of infectious agents arealso availa- ble in veterinary medicine (forreview, see Pfef- feretal. 1995), but havenotyetbeen used very oftenatthe prenatal stage.Incattle,prenatal di- agnosis by PCR has been used for detecting bo- vine citrullinaemia (Healy etal. 1993)and foe- talsex (Kadokawaetal. 1995)and for determi- nation ofsexand transgene incorporation from afoetus produced by DNA microinjectionatthe pronuclearstage(Hyttinenetal. 1994).

In cattle, there are situations in which it would be valuable toknow the sex of the foe- tusesofpregnantheifers. Thiscanbe ascertained by examining the foetal genitals with ultrasound.

However,the time within which suchanexami-

©Agricultural and Food Science inFinland Manuscriptreceived June1996

(2)

nation can be carried out is short, and usually several examinations havetobe madetoachieve efficiency approaching 100% (Curran 1992).

Thus it may often be bothmore practical and safer to analyse cells from the amniotic fluid.

Possible risks for pregnancies caused by amnio- centesis in cattle have been described by Leibo and Rail (1990).

In cattle, anamniotic fluid samplecanbe tak- en from a living animal either through a flank incision at2 to 5 months of pregnancy (Leibo and Rail 1990, Healyetal. 1993, Hyttinenetal.

1994)ortransvaginallyat2to9 months of preg- nancy (Kadokawa etal. 1995) under local an- aesthetic. The advantage of using amniotic rath- erthan embryonic cells is that loss ofpregnancy is avoidedas there is noneedtomanipulate the embryo. Moreover, the timing of postimplanta- tion diagnosis isnot so strictly limitedasis that of preimplantation diagnosis. Amniotic fluid analysiscanalso be used tocomplement preim- plantation diagnosis, and unwanted foetusescan be detected and aborted.

In this study, cells were harvested by cen- trifugation from various amounts of amniotic fluid collected from uteri of slaughtered preg-

nantcows.The amniotic fluid sampleswerethen used for diagnosis ofsex(Y-chromosomal DNA) by PCR. To distinguish between foetal andma- ternal cells, analyses of K-casein variants(A, B and E) and, when necessary, microsatellite loci were performed.

Material and methods

Sample collection and preparation

Ten uteri frompregnant cows were collectedat a slaughterhouse. The uteriwere carefully dis- sected in the laboratory and samples from each foetus and uterus and the amniotic fluid were collected. The amniotic fluid was collected through the amniotic membrane using an 18 G needle attached to a 10 ml syringe. DNA was

purified from <5mm3pieces of foetal anduter- ine tissue by the procedure used for purifying DNA from human nucleated cells (Miller etal.

1988) From the first five foetuses, 1.5-10 ml replicates of amniotic fluid were collected and purified after proteinase Ktreatment (Higuchi 1989) to increase DNA yield. The purified DNA was diluted with 100 pi of distilled water.From allexcept the first threeuteri,0.5-1.5-ml amni- otic fluid samples werealso collected and these small volumes were treated with25-100 pi of proteinase K solution after being harvested by spinning. After proteinase K inactivation (10 min at98°C), these latter samples were used for di- agnosis without further purification. Large vol- umes(in 10-mltubes)werecentrifugedat3000 G and small volumes in eppendorf tubes at 13 000 G,allatroom temperaturefor30 min. All amni- otic fluid samples were stored frozen at-20°C before analysis. One pi of the purified and 1 or 5 pi of the unpurified amniotic fluid were used fora PCR reaction.

Diagnosis by PCR

All foetuses werediagnosed for phenotypic sex and by PCR. All PCR samples (uterus, foetus and amniotic fluid replicates, 1 pl/each PCR re- action) were diagnosed for sex according to Bredbacka and Peippo (1992) using the embryo sexing method based on restriction fragment length polymorphism analysis of the ZFY/ZFX locus (Fig. 1).Amplifications were performed using an MJ Minicycler (MJ Research, Inc., Watertown, MA, USA)

To verify the origin of DNA (foetal or ma- ternal), the samples (1 pl/each PCR reaction) were also diagnosed for milk protein variants, K-casein A, B and E alleles (Fig. 2), according to Medrano and Aguilar-Cordova (1990) with modifications described by Velmalaetal.(1993).

Amplifications were performed using the MJ Minicycler.

If there was no difference between the foe- tusand the dam in eithersex orK-casein vari- ants, samples were studied for microsatellite

(3)

Vol.5(1996):541-546.

polymorphism using three differentsetsofprim- ers: BoLA (Creightonetal. 1992),and HEL 5 and HEL 10 (Kaukinen and Varvio 1993).The latter two primer pairs were amplified in the samereaction in afinal volume of 25 pi. The final assay conditions were: 50 ng of sample DNA or 5 pi of centrifuged and proteinase K- treated amniotic cells, 0.8 mM dNTPs (Finnzymes, Espoo, Finland), 10 pmol of each primer and 1 IU of thermostable DNA polymer-

ase(DynaZyme™, Finnzymes) in PCR buffer(10 mM Tris-HCI (pH 7.4at 25°C), 1.5 mM MgCl2,

50 mM KCI, 0.1% Triton X-100; Finnzymes).

Sampleswereamplified usingaPTC-100™ Pro- grammable Thermal Cycler(MJResearch, Inc.) asfollows: 5 min initial denaturationat94°C followed by 30 s at94°C, 1 min at55°C and 35 sat72°C for 27 cycles. A final extensionat72°C for8 min completed each amplification session.

The fluorescein- labelled PCR products were separated on 6% denaturing PAGE gel (Ready- Mix, Pharmacia, Uppsala, Sweden) using the Automated Laser Fluorescent DNA Sequencer (Pharmacia). Sizewasdetermined withaninter-

nai size standard included in each lane. The gels wereanalysed using the Fragment Manager

Vl.l

program(Pharmacia).

Results

Five of the 10uteri collected containedafemale and fiveamale foetus. Sexeswereeasily identi- fied from the phenotype of each foetus of 9 to

33cmin size (i.e.approximately 70to 120 days of age according to Noakes 1986). Amplifica- tion was successful on all the replicates ofam- niotic fluid analysed, and correct signals were obtained each timeexceptthatasingle replicate from twofoetuses with original volumes of 10

ml didnotresult in any amplification in PCR. In these casesthe pellets ofcellswereprobably lost during the purification process. The results for sex,K-casein and microsatellite typingare sum- marized in Table 1.

Fig. I. Bandingpatterns from male (lanes 1-8) and female (lane 9)samplesafteramplification of the ZFY/ZFX loci followedby digestion of theresulting productwith Pstl restriction endo- nuclease. Lines 1-7representreplicatesofam- niotic fluidsamples; 0.5 ml(lanes 1-3), 1 ml (lanes 3-6)and 1.5 ml (lane 7)aspirated origi- nally.Lanes8-10arecontrols: foetus, dam and a negativecontrol (sample replaced withwa- ter),respectively. Lane 11 isamolecular size marker. (Photo: Jaana Peippo).

Fig. 2. An example ofkappa-casein genotypes afteramplificationof thekappa-caseinlocus fol- lowedby digestionof theresulting productwith Haelll (lanes3,5,7and 10) andHinfl(lanes2, 4, 6and 9) restriction endonucleases. Lanes2- 3 and4-5represent amniotic fluidreplicates, lanes6-7 foetus and 9-10 dam, respectively.

Thekappa-caseingenotypesareBEfor the foe- tus andAEfor the dam. Lane I isanegative control,where thesample DNAisreplacedwith waterand lane 8is amolecular size marker.

(Photo: JaanaPeippo).

(4)

Table 1.Results of sex,kappa-casein(K-Cn)and microsatellite analysisof foetuses and their dams.

Date Foetus Fluid Sex: K-Cn: Microsatellite (dam;foetus):

size (cm) (ml) phenot/PCR dam/foetus BoLA HEL 5 HEL 10

26.5 13.5 4xlo F/F BE/AB n.a. n.a. n.a.

07.6 10.5 6xlo F/F AA/AB n.a. n.a. n.a.

08.6 33.0 3xlo M/M AA/AA n.a. n.a. n.a.

14.6 16.0 Ix 3 M/M AB/AB n.a. n.a. n.a.

4x1.5

26.7 18.5 2xlo F/F AA/AE n.a. n.a. n.a.

6x1.5 6xl

02.8 9.0 6x1.5 F/F AE/AE 124/134;126/134 152/162;162/162 102/102;102/102 6xl

13.0 6x1.5 M/M AE/BE n.a. n.a. n.a.

6xl

03.8 12.5 6x1.5 M/M AA/AE n.a. n.a. n.a.

6xl

16.5 6x1.5 F/F AA/AA 126/136;126/130 152/164;152/162 102/108;108/108 6xl

09.8 25.0 2x1.5 M/M AA/AA n.a. n.a. n.a.

4xl 6x0.5 n.a.=notanalysed

Discussion

We show here that aslittleas 1 pi of proteinase K-treated amniotic fluid(0.5ml aspirated origi-

nally) containsasufficientamountof foetal cells for analysis of single copy genes by PCR fol- lowed by restriction fragment length polymor- phism analysis. Furthermore, the amniotic fluid sample DNA does not need to be purified; on the contrary, cellular material may be lost dur- ing purification. The uniform andstrong bands on the electrophoresis gels imply that parallel samples containedacell number clearly exceed- ing the critical number for successful PCR.

Hence the protocol may not be sensitiveto var- iations in cellconcentrations, atleast in unpuri- fied samples.

Maternal cell contamination is a potential sourceof misdiagnosis in amniotic fluid assays.

Benn and Hsu(1983)reported that suchcontam- ination was relatively low(0% to 0.543%) in

humans. We used molecular markers to verify that the DNA analysed wasof foetal rather than maternal origin. In all instances, the foetal ori- gin of DNA could be confirmed by either sex determination, orK-casein ormicrosatellite anal- ysis. Highly polymorphic microsatellite lociare ideal for this purpose and have previously been used inhumans, too (Rebello etal. 1994, Smith etal. 1995). Inourstudy only foetal membranes were penetrated for aspiration of amniotic fluid witha needle. In practice, however, aspiration may have tobe performed transvaginally,apro- cedure that certainly increases the risk ofmater- nal cell contamination. When samplesaretaken forsexdetermination itis, however, unlikely that minor contamination will inhibit the amplifica- tion of Y-chromosomal DNA. Consequently,

identification of foetal DNA in the sample should be sufficient for successful analysis.

The PCR approachcanbe usedover alonger period during pregnancy than sexing of foetuses by ultrasound. We have amplified Y-cromosom-

(5)

Vol. 5(1996): 541-546.

al DNA from the amniotic fluid ofafoetus4cm in size,equivalenttoan age of 45-50 days, i.e.

tooyoung tobe diagnosed by ultrasound.

Application of the postimplantation diagno- sis described here may be useful in some com- mercial and researchsituations,e.g. when preg- nantheifersaretobe soldorthe purity of X- or Y-separated sperm populations has tobe tested after artificial inseminations.

The ethical aspects of amniocentesis should

also be considered. If abortion may be a conse- quence oftesting amniotic fluid samples, one should also consider alternative approaches, such aspreimplantation diagnosis.

Acknowledgements.We wish to thank the LSO abattoir in Forssa forprovidingthe uteri and Anneli Virta forperform- ingthe fragment analysiswith theALF.The technicalas- sistance of JuhaKantanen,ReijaLaitinen and Tuula-Mar- jattaNieminen isgreatly appreciated.

References

Benn, P.A.&Hsu, L.Y.F. 1983.Maternal cell contamina- tion of amniotic fluid cell cultures: results ofaUSnation- wide survey. Journal of Medical Genetics 15:297-305.

Bredbacka,P.&Peippo,J.1992.Sex diagnosisof ovine and bovine embryos by enzymatic amplification and di- gestionof DNA from the ZFY/ZFX locus. Agricultural Science in Finland 2: 233-238.

Creighton,P.,Eggen,A., Fries, R., Jordan,S.A.,Het- zel, J.,Cunningham,E.P.&Humphries,P. 1992.Map- ping of bovine markers CYP2I,PRLand BOLADRBPI by genetic linkage analysisinreference pedigrees. Ge- nomics 14: 526-528.

Curran, S. 1992. Fetal sex determination in cattle and horses by ultrasonography. Theriogenology37: 17-21.

Dupouy-Camet, J.,Lavareda De Souza,S.,Bougnoux, M.E., Mandelbrot, L., Hennequin, C., Dommergues,M., Benarous, R.&Tourte-Schaffer, C. 1990.Preventing congenital toxoplasmosis.The Lancet 336: 8721, 1017- 1018.

Grover, C.M., Thulliez, P., Remington, J.S. &

Boothroyd, J.C.1990.Rapid prenatal diagnosisofcon- genital toxoplasmainfectionby using polymerasechain reaction and amniotic fluid. Journal of Clinical Microbiol- ogy28: 2297-2301.

Healey,P., Dennis, J., Rawlinson,R.&Andersson,L.

1993. Prenatal diagnosis of bovine citrullinaemia. Re- search inVeterinary Science55;271-274.

Higuchi,R. 1989.Simpleand rapid preparationof sam- plesfor PCR.In: Erlich, H.A.(ed.). PCR technology.Prin- ciples and applications for DNAamplification. Stockton Press, N.Y.p. 31-38.

Hyttinen,J.-M., Peura, T., Tolvanen, M., Aalto, J.,Al- honen, L., Sinervirta, R., Halmekytö,M., Myöhänen,

S.&Jänne,J.1994.Generationof transgenic dairy cat-

tle from transgene-analyzed and sexed embryos pro- duced invitro. Bio/Technology 12: 606-608.

Kadokawa, H., Minezawa, M.,Takusari, N., Takahashi, H., Sasaki, O. &Kariya, T. 1995. Detection of bovine fetalDNAby polymerasechain reaction for prenatalsex-

ing. Theriogenology43: 242 (Abstract).

Kaukinen, J.&Varvio, S.-L. 1993.Molecular genetic markers. Eight polymorphicbovinemicrosatellites. Ani- mal Genetics24: 148.

Koch,W.C.&Adler,S.P. 1990.Detection of human par- vovirus 819 DNAby usingthe polymerase chain reac- tion. Journal of Clinical Microbiology28: 65-69.

Kurauchi,0.,Yagami,H.,Kasugai, M.,Mizutani, S.&

Tomoda,Y. 1992.Rapiddetermination of fetal sexusing amniotic fluid cells and the polymerase chain reaction.

Archives of Gynecology and Obstetrics 251: 145-148.

Leibo,S.P.&Rail,W.F. 1990.Prenatal diagnosis ofsex inbovinefetusesby amniocentesis. Theriogenology33:

531-552.

Medrano, J.F.& Aguilar-Cordova,E. 1990.Genotyp- ingof bovinekappa-casein loci followingDNAsequence amplification. Bio/Technology8: 144-146.

Miller, S.A., Dykes, D.D. &Polesky,H.F. 1988. A sim- ple salting out procedure for extractingDNAfrom human nucleated cells. Nucleic Acids Research 16;1215.

Nata, M.,Nagae,M., Aoki, Y., Sagisasa,K.& Uehara, S. 1993.Prenatal paternity testing with DNAanalyses.

International Journal of Legal Medicine 106: 160-162.

Noakes, D.E. 1986.Libraryof veterinary practice. Fertil- ity and obstetricsin cattle. Ist ed. Blackwell Scientific Publications, London. 25 p.

Pfeffer, M., Wiedmann,M.&Batt,C.A. 1995.Applica- tions ofDNAamplification techniquesinveterinary diag- nostics,AReview,VeterinaryResearch Communications

19: 375-407.

Pinckert, T.L., Lebo, R.V.&Golbus, M.S. 1989.Rapid determination of fetalsexby deoxyribonucleicacidam- plificationofY chromosome-specific sequences. Ameri- canJournal of Obstetrics and Gynegology161: 693-698.

Rebello, M.T., Abas, A., Nicolaides,K.&Coleman,D.V.

1994. Maternal contamination of amniotic fluid demon- strated by DNAanalysis. Prenatal Diagnosis 14: 109-

112.

Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi,R., Horn,G.T.,Mullis,K.B.&Erlich,H.A. 1988.

Primer-directed enzymatic amplification of DNAwith a

(6)

thermostableDNApolymerase. Science239: 487-491.

Smith, G.W., Graham, C.A., Nevin, J.& Nevin,N.C.

1995.Detection of maternal cell contamination inamni- otic fluid cell cultures using fluorescent labelled micro-

satellites. Journal of Medical Genetics32: 61-64.

Velmala, R., Mäntysaari, E. & Mäki-Tanila,A. 1993

Molecular genetic polymorphism atthe K-casein and p-lacloglobulinlociinfinnish dairy bulls. Agricultural Sci- enceinFinland 2: 431- 434.

Von Eggeling,F.,Freytag, M., Fahsold, R., Horsthem-

ke,B. &Claussen, U. 1993.Rapiddetection of trisomy

21 by quantitative PCR. Human Genetics91: 567-570.

SELOSTUS

Sikiön DNA;n tunnistaminen naudan sikiövedestä polymeraasiketjureaktion avulla

Jaana Peippoja Peter Bredbacka

Maatalouden tutkimuskeskus

Sikiövedestätehtävä diagnostiikkaontullut nopeam- maksi ja tehokkaammaksi viime vuosikymmenellä keksityn polymeraasiketjureaktion (PCR) myötä.

DNA:nvoi nyt analysoidasuoraan aspiroidusta sikiö- vesinäytteestä ilman soluviljelyä. Ihmislääketietees- PCR:ään perustuva sikiövesidiagnostiikka on ol- lut käytössä jouseiden vuosien ajan. Valmius myös naudan perinnöllisten sairauksien ja taudinaiheutta- jien toteamiseksi onjo olemassa, muttamenetelmiä ei ole vielä otettuyleisestitähänkäyttöön.Tässä ko- keessa haluttiin selvittää, kuinkapienestä sikiövesi- näytteestä sukupuolenmääritys voidaan luotettavasti tehdä, jamiten näyteonpuhdistettava analyysiä var- ten.

Tutkimusta varten teurastamolta haettiin 10koh- tua 70-120 päivänikäisine sikiöineen. Laboratoriossa kerättiin näytteet sikiövedestä, sikiöstä jakohdusta.

Sikiövedestä määritettiin sukupuoli ja kappa-kaseii- ni -tyyppi, jotta näytteen voitiin osoittaa sisältävän sikiön soluja.Jos emän jasikiön välilläei ollutkum-

massakaan em. analyysissä eroa, tehtiin vielä mikro- satelliitteihin eliDNA:n toistojaksoihin perustuva analyysi. Mikrosatelliitteja esiintyy läpikoko geno- minjakunkin mikrosatelliittilokuksen muuntelu eri yksilöiden välilläonsuurta,jotenniidenjoukostaon mahdollista valita sellaiset, joiden “sormenjäljet”

ovatyksilölliset.

Kaikistasikiövesinäytteistä saatiin sama signaa- li kuin itse sikiöstä ja nämämolemmat poikkesivat emän signaalista. Kahdesta puhdistetusta sikiövesi-

näytteestä katosi soluaines puhdistuksen aikana, jo- ten onyksinkertaisempaa ja turvallisempaa jättää näytepuhdistamatta, koska analyysin onnistuminen ei siitä vaarannu.

Tutkimuksen perusteella voidaantodeta, että ke- hittyvän sikiön sukupuoli ja tarvittaessa muitakin DNA-tasolla näkyviäominaisuuksia voidaan luotet- tavasti määrittääsuoraan0,5-1,5ml:stä sikiövettäil-

man edeltävää soluviljelyä tai DNA:n puhdistusta.

Viittaukset

LIITTYVÄT TIEDOSTOT

Jos valaisimet sijoitetaan hihnan yläpuolelle, ne eivät yleensä valaise kuljettimen alustaa riittävästi, jolloin esimerkiksi karisteen poisto hankaloituu.. Hihnan

Vuonna 1996 oli ONTIKAan kirjautunut Jyväskylässä sekä Jyväskylän maalaiskunnassa yhteensä 40 rakennuspaloa, joihin oli osallistunut 151 palo- ja pelastustoimen operatii-

Tulokseen vaikuttavat kaasun lisäksi merkittävästi myös selektiivilasin emissiviteetti ja lasien välinen etäisyys, minkä vuoksi mittari täytyy kalibroida eri selektiivilaseille

Mansikan kauppakestävyyden parantaminen -tutkimushankkeessa kesän 1995 kokeissa erot jäähdytettyjen ja jäähdyttämättömien mansikoiden vaurioitumisessa kuljetusta

Tornin värähtelyt ovat kasvaneet jäätyneessä tilanteessa sekä ominaistaajuudella että 1P- taajuudella erittäin voimakkaiksi 1P muutos aiheutunee roottorin massaepätasapainosta,

Ana- lyysin tuloksena kiteytän, että sarjassa hyvätuloisten suomalaisten ansaitsevuutta vahvistetaan representoimalla hyvätuloiset kovaan työhön ja vastavuoroisuuden

Työn merkityksellisyyden rakentamista ohjaa moraalinen kehys; se auttaa ihmistä valitsemaan asioita, joihin hän sitoutuu. Yksilön moraaliseen kehyk- seen voi kytkeytyä

The new European Border and Coast Guard com- prises the European Border and Coast Guard Agency, namely Frontex, and all the national border control authorities in the member