• Ei tuloksia

Long-term effects of small-scale variations in fire severity on bilberry (Vaccinium myrtillus L.) growth in the boreal forests of eastern Finland

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Long-term effects of small-scale variations in fire severity on bilberry (Vaccinium myrtillus L.) growth in the boreal forests of eastern Finland"

Copied!
28
0
0

Kokoteksti

(1)

                         

       

Long-­‐term  effects  of  small-­‐scale  spatial  variations  in  fire  severity  on  bilberry   (Vaccinium  myrtillus  L.)  growth  in  the  boreal  forests  of  eastern  Finland  

   

 

MEM  Report  (UNB)  and  M.Sc.  Thesis  (UEF)     Laura  Pekkola  

                   

Supervisors:    

Dr.  Jari  Kouki  (School  of  Forest  Sciences,  UEF)  

Dr.  Dave  MacLean  (Faculty  of  Forestry  and  Environmental  Management,  UNB)    

 

 

January  26,  2016    

 

(2)

Table  of  Contents  

Abstract  ...  2  

Introduction  ...  3  

Fire  History  ...  5  

Fire  in  Conservation  ...  6  

Biology  and  Importance  of  Bilberry  ...  6  

Research  Problem  ...  7  

Materials  and  Methods  ...  8  

Study  Site  ...  8  

Project  Fire  ...  8  

Fire  Severity  Data  ...  9  

2014  Experimental  Design  ...  9  

Vegetation  Sampling  ...  10  

Analysis  Methods  ...  10  

Statistical  Analysis  ...  12  

Results  ...  12  

Discussion  ...  16  

Dwarf  Shrub  Biomass  ...  16  

Regression  Analysis  of  Cover  and  Mass  ...  16  

Regression  Model  ...  17  

Future  Studies  ...  18  

Implications  for  Conservation  ...  19  

References  ...  21    

   

(3)

Abstract  

 

Intensive  forest  management  and  the  local  fire  history  have  contributed  to  the  simplification  of   Finland’s  forests.  Negative  consequences  have  been  seen  in  plants,  such  as  bilberry  (Vaccinium   myrtillus  L.),  which  has  been  declining  in  Finland  over  the  past  50  years.  Bilberry  is  a  socially,   economically   and   ecologically   important   dwarf   shrub   in   Finland,   making   it   of   interest   in   conservation  planning.  Prescribed  burning  has  been  suggested  as  a  conservation  tool  in  Finland   to  return  species  and  structural  diversity  to  the  forests.  Fire  severity  has  been  found  to  vary  at   small  spatial  scales  within  stands,  but  little  research  has  gone  into  the  effects  of  this  variation  on   bilberry.  The  objective  of  this  study  is  to  determine  whether  i)  dwarf  shrub  cover  recovered  at   the  stand  level  13  years  post-­‐fire  and  ii)  how  small-­‐scale  spatial  variations  in  fire  severity  affect   bilberry  growth  13  years  post-­‐fire.  

 

Dwarf   shrub   and   bilberry   percent   cover   and   biomass   were   sampled   and   compared   with   fire   severity  data  from  2001  using  a  general  linear  model.  It  was  found  that  dwarf  shrub  biomass  at   the   stand   level   did   return   to   pre-­‐fire   conditions   by   13   years   post-­‐fire.   It   was   also   found   that   bilberry  biomass  and  cover  declined  slightly  with  increasing  fire  severity.  Therefore,  fire  at  the   stand   level   likely   does   not   impact   bilberry   growth   anymore   after   13   years.   However,   more   severely  burned  areas  may  still  see  an  effect  of  fire  at  this  temporal  scale.  Severe  fires  damage   bilberry   rhizomes,   which   decreases   bilberry’s   ability   to   grow   by   vegetative   structures.   Fire   severity  should  be  considered  when  planning  to  use  fire  for  conservation,  especially  if  it  is  an   important  area  for  bilberry.  

 

 

 

(4)

Introduction  

 

The  structure,  function  and  processes  of  forests  are  defined  by  the  natural  disturbances  that   occur  within  them  (Lindenmeyer  and  Franklin,  2002).  Though  natural  disturbances,  such  as  fire,   wind  or  insects,  can  seem  to  be  damaging  to  forests,  they  are  an  important  part  of  the  natural   cycle  of  the  ecosystem.  Disturbances  create  heterogeneity  in  age  and  spatial  structure  and  allow   for  different  species  to  establish,  thus  creating  a  variety  of  habitats  and  processes  across  the   landscape   (Bergeron   et   al.,   2002;   Lindenmeyer   and   Franklin,   2002).   These   effects   caused   by   natural   disturbances,   as   well   as   the   patterns   in   occurrence   are   described   by   the   natural   disturbance  regime  of  an  ecosystem.    

 

In  the  boreal  forest,  fire  is  an  important  component  of  the  natural  disturbance  regime  (Wein  and   MacLean,  1983;  Esseen  et  al.,  1999;  Bergeron  et  al.,  2002;  Lindenmeyer  and  Franklin,  2002).  Of   the  world’s  1.7  billion  hectares  (ha)  of  boreal  forest,  5-­‐15  million  ha  burns  annually  (Stocks  1991;  

Kasischke   and   Stocks   2000;   Conard   et   al.   2002).   The   area   of   forest   that   burns   has,   however,   decreased  in  recent  decades  due  to  fire  suppression  practices  intended  to  protect  people,  their   property   and   timber   resources   (Niklasson   and   Granstrom,   2000).   This   has   had   negative   implications  on  forests  due  to  the  importance  of  fires  to  the  boreal  ecosystem.  

 

Fire   is   important   in   maintaining   boreal   ecosystem   structure   and   function.   Fire   can   maintain   biodiversity   by   providing   a   variety   of   habitats   across   the   landscape   (Siitonen,   2001)   and   by   allowing  for  deciduous  tree  regeneration,  allowing  for  associated  species  to  survive  (Kouki  et  al.,   2004).   Fires   also   provide   suitable   growing   environments   for   Scots   pine   (Pinus   sylvestris  L.),   deciduous   and   other   early   successional   tree   species   by   decreasing   the   populations   of   later   successional   species,   such   as   Norway   spruce   (Picea   abies   (L.)   Karst),   which   tend   to   dominate   landscapes  that  do  not  experience  disturbances  (Kuuluvainen,  2002;  Similä  and  Junninen,  2012).  

 

Fires  maintain  structural  heterogeneity  in  forests  by  burning  some  areas  severely,  and  leaving   other  areas  untouched  for  hundreds  of  years.  This  helps  preserve  over-­‐mature  forests  on  the   landscape,   while   allowing   young   forests   to   establish   as   well   (Bergeron   et   al.,   2002).   This   diversifies   the   available   habitat   on   the   landscape   for   organisms   requiring   different   stages   in   succession.  Fire  can  also  expose  mineral  soil  (Granström,  2001)  and  return  nutrients  to  the  soil   (Mallik,  2003),  allowing  for  favourable  growing  conditions  for  vegetation.  These  effects  of  fire,   therefore,  increase  the  overall  diversity  and  function  of  the  boreal  forest.  

 

Current  forest  management  practices  tend  to  simplify  forest  structure  in  terms  of  age,  species   and  landscape  distribution  (Bergeron  et  al.,  2002).  Intensive,  conventional  forest  management   can  also  result  in  loss  of  fire-­‐dependent  understory  species,  loss  of  biodiversity  in  general  and  a   simplification   of   the   species   present,   with   species   such   as   spruce   becoming   overwhelmingly   dominant  (Lahti  et  al.,  1991;  Gustafsson  et  al.,  1994;  Östlund  et  al.,  1997).  A  landscape  of  spruce   alone   reduces   the   variety   in   possible   habitats   that   would   exist   if   pioneer   species   and   other   mature  tree  species  were  present  in  higher  numbers  as  well.  

 

(5)

Though  forest  harvesting  and  fire  both  remove  biomass  from  the  forest,  the  end  results  are  not   identical  (see  e.g.  McRae  et  al.,  2001;  Lecomte  et  al.,  2006).  Harvesting  tends  to  remove  all  or   most  of  the  trunks,  whereas  fire  leaves  behind  much  of  the  large  wood,  instead  removing  fine   fuels  such  as  branches  (Sippola  et  al.,  1998).  Fire  also  provides  an  element  of  disturbance  that   harvesting  and  site  preparation  cannot  in  terms  of  exposing  mineral  soil  and  returning  nutrients   to  the  forest  floor.  Therefore,  there  is  a  crucial  difference  between  harvesting  practices  and  fire.  

 

Finland  has  a  high  proportion  of  managed  forests,  with  90%  of  forested  land  under  management   for   timber   production   (Kouki   et   al.,   2001;   Löfman   and   Kouki,   2001).   Therefore,   forest   management  decisions  that  are  made  in  Finland  affect  a  large  proportion  of  the  country’s  forests.  

It  has  been  suggested  that  the  main  threats  to  Finland’s  forests  include  habitat  fragmentation   and  scarcity  of  natural  fire  (Raunio  et  al.,  2008;  Rassi  et  al.,  2010).  In  order  to  address  these   threats,   forest   management   in   Finland   could   incorporate   natural   disturbance   emulation.   The   purpose  of  this  form  of  forest  management  is  to  imitate  natural  disturbances  in  order  to  optimally   maintain  the  processes  and  structures  created  by  such  events  while  still  allowing  for  resource   extraction.  

 

Wind,  snow,  water,  insects,  mammals  and  fire  are  the  important  natural  disturbances  found  in   Finnish   forests   (Similä   and   Junninen,   2012).   Fire   in   particular   can   be   emulated   in   forest   management   in   boreal   forests   (Kuuluvainen   2002;   Lindenmeyer   and   Franklin,   2002).   New   forestry  models  have  been  introduced  to  minimize  the  negative  effects  of  intensive  management   in   forests   (Kohm   and   Franklin,   1997;   Larsson   and   Danell,   2001)   by   retaining   trees   within   cutblocks,  thereby  creating  cutblocks  that  are  more  naturally  shaped  and  sized  while  maintaining   landscape-­‐level   variability   through   appropriate   planning   of   cutblock   placement.   Prescribed   burning  can  also  be  incorporated  by  pairing  it  with  harvesting.  This  reduces  the  growth  of  fast-­‐

growing   species   such   as   grasses,   allowing   for   establishment   of   forest   species   (Johnson   et   al.,   2014),  and  maintains  structural  diversity  in  the  forest  (Lilja  et  al.,  2005).    

 

Fire  also  creates  diversity  by  burning  at  different  severities  within  the  stand  (Dyrness  and  Norum,   1983;  Miyanishi  and  Johnson,  2002).  This  was  mainly  affected  by  the  moisture  of  the  lower  moss   and  humus  layers  of  the  forest  substrate.  Most  research  on  the  effects  of  fire  severity  have  been   done  on  tree  recruitment  (e.g.  Johnstone  and  Chapin  2006;  Johnson  et  al.,  2014).  Fire  can  have   varying  effects  on  tree  seedling  establishment  and  germination,  however  this  is  not  the  interest   of  this  study.  

 

To  date,  there  has  been  little  research  on  the  effects  of  this  small-­‐scale  variation  on  understory   vegetation.  One  study  looked  at  the  patchy  nature  of  fire  severity  in  Sweden  and  found  that  less   severely  burned  areas  within  the  stand  acted  as  refuges  for  bryophytes  (Hylander  and  Johnson,   2010).  Therefore,  there  is  a  need  to  look  at  the  effects  of  small-­‐scale  variations  in  fire  intensity   on  other  understory  vegetation  as  well.  

 

The   purpose   of   this   paper   is   to   examine   the   effects   that   variation   in   fire   has   on   understory   vegetation,  in  particular  bilberry  (Vaccinium  myrtillus  L.)  in  the  boreal  forest  of  eastern  Finland.  

(6)

A  better  understanding  of  the  effects  of  fire  on  bilberry  will  help  in  evaluating  the  efficacy  of   forest  restoration  practices  in  Finland  as  measured  by  a  non-­‐timber  forest  product.  

 

Fire  History    

Understanding  the  fire  history  of  a  region  can  provide  information  on  the  natural  occurrence  of   fire  as  well  as  the  historical  effects  of  anthropogenic  activities.  In  the  boreal  forests  of  Sweden,   fire  history  better  correlates  with  human  cultural  history  than  it  does  climate  data  (Niklasson  and   Granström,  2000;  Lehtonen  and  Huttunen,  1997),  meaning  humans  have  played  a  large  role  in   controlling  fire  occurrence  on  the  landscape.  Due  to  the  geographical  and  cultural  similarities   within  the  Nordic  countries,  it  can  be  expected  to  be  similar  in  Finland.  

 

Naturally,  the  fire  return  interval  in  eastern  Finland’s  forest  has  been  estimated  to  be  in  the  range   of  80-­‐200  years,  depending  on  the  forest  site  type  (Pitkänen  and  Huttunen,  1999;  Haapanen  and   Siitonen,  1978).  Prior  to  the  mid-­‐17th  century,  fires  tended  to  be  few  in  number  and  large  in  size   throughout  the  Fennoscandian  boreal  forest  (Niklasson  and  Granström,  2000).  This  suggests  that   large   natural   fires   that   were   greater   than   1000   ha   historically   burned   through   large   tracts   of   forest  with  little  influence  from  humans.  

 

In  the  17th  century,  increased  human  influence  in  Fennoscandian  boreal  forests  became  apparent   in  the  change  in  fire  pattern.  Fires  became  more  numerous  and  smaller,  and  fire  return  intervals   shortened  significantly  (Niklasson  and  Granström,  2000).  At  this  time,  slash-­‐and-­‐burn  agriculture   became   prevalent   on   the   landscape,   as   humans   cleared   forests   for   fields.   From   the   1600’s   through  to  the  mid-­‐1800’s,  fires  became  very  common  in  Fennoscandia  due  to  slash-­‐and-­‐burn   agriculture  (Heikinheimo,  1915).  With  this  form  of  agriculture,  the  fire  return  interval  was  only   40-­‐50  years  (Lehtonen,  1998).  

 

The  prevalence  of  slash-­‐and-­‐burn  agriculture  began  to  decrease  due  to  the  establishment  of  the   Finnish  Forest  and  Parks  Service  in  1859  (Lehtonen  and  Huttunen,  1997).  The  Forest  and  Parks   Service  began  the  practice  of  fire  suppression  in  Finnish  forests  to  protect  the  timber  resource,   and   to   allow   for   the   growth   of   forestry   as   an   industry.   Since   the   implementation   of   fire   suppression,  the  fire  return  interval  has  been  80-­‐120  years  (Granström,  1996;  Parviainen,  1996;  

Haapanen  and  Siitonen,  1978).  However,  size  of  fires  remains  smaller  than  what  was  seen  under   the  natural  disturbance  regime.  

 

Between  2000  and  2012,  an  average  of  566  ha  of  forest  burned  in  Finland  annually  (Finnish  Forest   Research  Institute,  2013).  Forest  fires  that  do  occur  in  Finland  tend  to  be  quite  small,  measuring   approximately  1  ha  in  size  (FAO,  2006;  Finnish  Forest  Research  Institute,  2004).  Therefore,  fire   suppression  has  limited  the  frequency  of  fires  to  more  natural  levels,  but  has  not  reinstated  the   large  fires  that  were  seen  in  the  17th  century.  

   

(7)

Fire  in  Conservation    

Reintroduction  of  fire  has  been  considered  as  a  conservation  tool  in  Finnish  forests.  In  Finland,   4.8   million   ha   of   forest   (13%   of   the   land   area)   is   protected   or   has   some   level   of   harvesting   restrictions  present  (Finnish  Forest  Research  Institute,  2013).  In  these  areas,  prescribed  burning   is  being  tested  as  a  conservation  tool  for  forest  restoration  (Vanha-­‐Majamaa  et  al.,  2007;  Similä   and  Junninen,  2012).  This  could  return  some  of  the  benefits  and  processes  that  fire  provides  to   the  landscape  in  a  controlled  manner.  In  managed  forests,  most  of  the  biomass  is  harvested  for   the   timber   industry.   Therefore,   even   if   fires   do   occur,   some   of   the   benefits   associated   with   mature  trees  and  fire  do  not  occur  in  the  forest.  

 

One   of   the   major   benefits   of   fire   is   that   it   is   an   important   creator   of   heterogeneity   due   to   variations  in  fire  characteristics.  There  are  three  important  characteristics  of  fire  (Bergeron  et  al.,   2002):  frequency,  how  often  a  fire  occurs  in  an  area;  intensity,  the  energy  output  per  unit  length   of  fire  front  (Byram,  1959);  and  severity,  the  transfer  of  heat  into  soil  and  degree  of  organic   material  removal  by  fire  (Rowe,  1983).  The  factor  of  interest  in  this  study  is  severity.  Factors  that   can  influence  the  severity  of  a  fire  include  topography,  weather  and  fuel  load  and  type  (Johnson   et  al.,  2014).  Therefore,  as  a  fire  passes  through  an  ecosystem,  it  will  leave  behind  areas  that  are   severely  burned,  as  well  as  unburned  areas  that  are  refuges  for  surviving  species.  

 

When  severe  fires  pass  through  forests,  it  is  the  understory  vegetation  that  is  most  affected.  As   fire  severity  increases,  more  heat  is  transferred  into  the  soil,  resulting  in  more  damage  to  roots   and   rhizomatous   structures.   For   example,   bilberry   rhizomes   –   underground   vegetative   reproductive  structures  –  will  die  within  10  minutes  of  exposure  to  temperatures  above  50°C   (Schimmel  and  Granström,  1996).  Fire  severity  can,  therefore,  affect  how  species  such  as  bilberry   regenerate  after  fire.  

 

It  has  been  found  that  rhizomatous  species  (e.g.  Vaccinium  dwarf  shrubs)  regeneration  post-­‐fire   is   negatively   correlated   with   the   depth   of   burn   (Schimmel   and   Granström,   1996).   Since   rhizomatous   growth   is   a   slow   process,   Schimmel   and   Granström   (1996)   hypothesized   that   it   would  take  many  years  for  bilberry  to  regenerate  in  a  severely  burned  area.  

 

Biology  and  Importance  of  Bilberry    

Bilberry  is  a  dominant  forest  floor  species  in  Scandinavian  boreal  forests  that  produces  berries   that   are   picked   for   consumption   and   that   feed   wildlife   (Atlegrim   and   Sjöberg,   1996).   It   is   a   rhizomatous   dwarf   shrub   that   is   very   common   in   mature   stands   of   both   pine   and   spruce   in   eastern   Finland.   Bilberry   is   an   important   component   of   boreal   forest   function   due   to   its   abundance,  contribution  to  ecosystem  services,  and  economic  and  cultural  importance  in  Finland   (Kettunen  et  al.,  2012).  Therefore,  conservation  practices  in  forests  should  consider  not  only  the   trees,  but  also  other  ecosystem  components,  such  as  dwarf  shrubs.  

 

(8)

Bilberry  plays  a  role  in  providing  food  for  species  such  as  capercaillie,  bank  voles,  moose  (Selås,   2001;   Lakka   and   Kouki,   2009;   Selås   et   al.,   2011);   red   deer   (Hegland   et   al.,   2010);   roe   deer   (Mysterud  et  al.,  1997);  and  pollinators  (Rodriguez  and  Kouki,  2015).  As  a  member  of  the  dwarf   shrub  functional  group,  bilberry  also  plays  a  role  in  soil  carbon  and  nutrient  cycling  and  driving   boreal  ecosystem  dynamics  through  its  role  as  an  important  food  source  (Nilsson  and  Wardle,   2005;  Kolari  et  al.,  2006).  

 

It  is  estimated  that  Finland’s  forests  produce  approximately  182  million  kilograms  of  bilberries   annually  (Turtiainen  et  al.,  2007),  of  which  5-­‐6%  are  gathered  for  personal  use  or  sale  (Turtiainen   et  al.,  2011).  In  2012,  6.8  million  kg  of  bilberry  were  brought  to  market,  producing  a  revenue  of   12.2   million   euros   (Finnish   Forest   Research   Institute,   2013).   There   is   also   a   high   cultural   involvement  in  wild  berry  picking,  with  approximately  60%  of  the  population  of  Finland  picking   berries  annually  (Saastamoinen  et  al.,  2000).  

 

In  Finnish  National  Forest  Inventories  over  the  past  50  years,  dwarf  shrub  cover,  including  that  of   bilberry,  has  declined  from  around  50%  to  below  30%  (Reinikainen,  2001).  This  is  partially  due  to   the  damage  caused  to  the  rhizomes  by  clear-­‐cutting  and  mechanical  site  preparation  (Atlegrim   and   Sjöberg,   1996;   Tolvanen,   1994;   Hautala   et   al.,   2001).   Clearcuts   are   also   damaging   to   the   bilberry  plants  due  to  the  drying  caused  by  the  increased  exposure  to  heat  from  the  sun  in  open   areas  (Mäkipää,  1999).  Fertilization  practices  can  also  negatively  impact  bilberry,  even  years  after   application  (Strengbom  and  Nordin,  2008).    

 

Therefore,  bilberry  occurrence  in  Finnish  forests  is  declining,  due  in  part  to  conventional  forest   operations.   Bilberry   is   a   significant   component   of   boreal   forests,   so   considering   it   in   forest   conservation  and  restoration  practices  is  important  in  order  to  conserve  the  related  ecosystem   services.  Due  to  the  cultural,  socio-­‐economical  and  biological  importance  of  bilberry,  its  perennial   growth  form  as  well  as  its  abundance  in  the  boreal  forest  of  eastern  Finland,  it  was  chosen  as  the   study  species.    

 

Research  Problem    

In  this  study,  the  effects  of  small-­‐scale  spatial  variations  in  fire  severity  on  bilberry  were  studied.  

As  a  rhizomatous  species,  the  regeneration  post-­‐fire  depends  partly  on  the  degree  of  damage  to   the  rhizomes  during  fire  (Turner  et  al.,  1998;  Macdonald,  2007;  Schimmel  and  Granström,  1996;  

Pidgen  and  Mallik,  2013).  Landscape-­‐scale  studies  of  fire  effects  on  understory  vegetation  have   been   conducted   previously   (e.g.   Johnson   et   al.,   2014;   Marozas   et   al.,   2013;   Schimmel   and   Granström,  1996),  but  the  effects  of  small,  within-­‐stand  variations  have  not  been  researched  for   bilberry.  This  study  will  examine  effects  13  years  post-­‐fire,  which  is  a  longer  temporal  scale  than   most  fire  follow-­‐up  studies.  

 

Fire  severity  varies  within  stands,  with  severely  burned  areas  being  dispersed  among  more  lightly   burned   areas   (Kafka   et   al.,   2001).   This   has   been   measured   through   the   variations   in   humus   consumption  by  fire  (Chrosciewicz,  1976;  Dyrness  and  Norum,  1983;  Zasada  et  al.,  1983).  Change   in  humus  depth  has  been  found  to  be  an  acceptable  indicator  of  heat  transfer  belowground  (ie.  

(9)

fire  severity)  (Schimmel  and  Granström,  1996).  Fire  severity  was  the  fire  characteristic  chosen  for   comparison  in  this  study,  as  this  information  was  readily  accessible  and  quantifiable.  

 The  first  objective  of  this  study  was  to  examine  the  average  recovery  of  dwarf  shrubs  on  a  burned   site,  13  years  post-­‐fire.  It  was  expected  that  dwarf  shrub  biomass  would  recover  to  levels  close   to  pre-­‐fire  levels  in  2014.  The  second  objective  was  to  determine  whether  small-­‐scale  variation   in   fire   severity   affect   bilberry   growth.   It   was   expected   that   areas   of   the   site   that   were   more   severely  burned  in  2001  would  exhibit  lower  bilberry  growth  in  2014  due  to  damages  to  rhizomes.  

Materials  and  Methods  

 

Study  Site    

The  study  was  conducted  in  Patvinsuo  National  Park,  located  in  Lieksa,  Finland  (at  63°N,  30°E),   which  falls  at  the  transition  between  the  south  and  middle  boreal  vegetation  zones  (Ahti  et  al.,   1968).  The  average  annual  temperature  for  the  region  is  2.4°C,  with  the  hottest  month,  July,   averaging   16.5°C   and   the   coldest   month,   January,   averaging   -­‐10.5°C.   Average   precipitation   is   620mm  for  the  year,  of  which  279mm  falls  between  May  and  August  (Pirinen  et  al.,  2012).  

 

The  forests  in  the  region  are  dominated  mainly  by  Scots  pine  and  Norway  spruce.  The  forests  in   the  region  have  a  history  of  intensive  management,  though  the  forests  within  Patvinsuo  National   Park   have   been   protected   from   harvesting   since   the   park   opened   in   1982.   Prior   to   the   20th   century,  most  of  the  forests  in  Finland,  including  the  eastern  region  within  which  this  study  took   place,  were  subject  to  slash  and  burn  agriculture  (Pitkänen  et  al.,  2002).  

 

Understory  vegetation  within  the  sites  consists  mainly  of  mosses,  lichens  and  dwarf  shrubs,  with   lingonberry  (Vaccinium  vitis-­‐idaea  L.)  and  bilberry  being  the  dominant  dwarf  shrubs.  The  high   cover  of  dwarf  shrubs,  mosses  and  lichens  indicates  that  the  forests  fall  under  the  classification   of  cowberry-­‐crowberry,  or  Empetrum-­‐Vaccinium  type  (EVT)  and  bilberry,  or  Myrtillus  type  (MT)   (Cajander,  1949).  The  dominance  of  pine  in  the  forest  of  our  study  sites  indicates  a  drier  forest   type,  which  supports  the  classification  under  EVT.  

 

Project  Fire    

In  1999,  24  sites  were  selected  in  the  area  of  Ilomantsi  and  Lieksa  to  form  Project  Fire  (Kouki,   2013).  Project  Fire  is  headed  by  Jari  Kouki  of  the  School  of  Forest  Sciences  at  the  University  of   Eastern  Finland.  The  sites  were  selected  in  mature  (150  year-­‐old)  pine-­‐dominated  stands,  with  a   mixture  of  spruce  and  birch.  Each  site  is  3-­‐4  ha  in  size,  which  corresponds  with  the  average  clear   cut  size  in  Finland  at  the  time.  Three  replicates  of  8  treatment  types  were  created:  clearcut,  10  

(10)

m3   retention   (ie.   10   m3   of   living   trees   were   left   on   site   after   harvest),   50   m3   retention,   and   unharvested,   with   each   harvesting   type   being   either   burned   or   unburned.   In   2000,   an   initial   structural  inventory  was  conducted,  encompassing  information  on:  living  and  dead  trees,  other   vegetation  composition,  organisms,  herbivory,  and  soil.  

 

Between  November  2000  and  January  2001,  the  18  sites  requiring  experimental  harvesting  were   harvested.  The  following  summer,  on  June  27-­‐28  2001,  the  12  sites  requiring  fire  disturbance   were  burned.  In  the  years  following  the  burning,  monitoring  of  short-­‐  and  long-­‐term  effects  of   the  treatments  has  continued.  

 

Fire  Severity  Data    

To  obtain  a  measure  of  fire  severity,  humus  layer  depth  measurements  were  taken  before  and   after  the  burning  done  in  2001  by  Jarkko  Laamanen  for  his  master’s  thesis  (Laamanen,  2002).  

Humus  depth  and  mass  were  measured  approximately  every  10  m  over  an  area  of  one  hectare   both   before   and   after   the   fire.   Interpolated   surfaces   for   both   before   and   after   burning   were   created  using  the  GPS  positions  of  the  humus  depth  measurements.  Comparison  of  these  allowed   for  fire  severity  variation  to  be  estimated  for  each  study  site.  Higher  fire  severity  was  denoted  by   a  higher  percent  decrease  in  humus  layer  thickness.  

 

In  general,  the  site  had  quite  low  fire  severity  (Laamanen,  2002).  The  humus  depth  on  the  site   chosen  for  the  2014  study  decreased  on  average  from  46mm  to  42mm.  The  fire  severity  was   likely  low  due  to  the  lack  of  fuel,  since  there  was  no  slash  from  harvesting  on  the  unharvested   site.   The   days   the   prescribed   burning   occurred   weather   conditions   were   clear   with   winds   at   approximately  2.3m/s.  Relative  humidity  was  between  41-­‐47%.  These  conditions  were  deemed   good   for   the   prescribed   burning,   though   a   stronger   wind   would   have   increased   fire   severity   (Laamanen,  2002).  

 

2014  Experimental  Design    

One  unharvested-­‐burned  site  (Site  30)  was  chosen  from  the  24  study  sites.  Only  one  site  was   chosen  because  this  study  was  intended  as  an  exploratory  descriptive  study  to  determine  trends   in  bilberry  growth  after  fire.  Data  were  collected  in  June  and  July  2014,  which  falls  within  the   main  growing  season  of  the  vegetation  of  interest.  

 

Within  each  site  100  plots  were  laid  out  in  a  grid  with  10  m  spacing,  as  close  as  possible  to  plots   that  were  measured  in  2001  after  the  fire.  A  handheld  Trimble  GPS  unit  with  the  2001  plot  data   was  used  in  combination  with  a  tape  measure  to  lay  out  the  plots.  The  coordinates  were  recorded  

(11)

at  each  point  using  the  Trimble  unit.  These  coordinates  were  used  to  compare  the  locations  of   the  bilberry  samples  with  the  fire  severity  measurements  from  2000.  

GPS  coordinates  for  each  plot  were  recorded  for  a  period  of  2  minutes,  with  a  measurement   interval   of   5   seconds.   Measurements   were   taken   in   this   way   to   increase   the   accuracy   and   precision  of  the  GPS  position,  as  small  errors  in  location  are  significant  when  comparing  to  the   fire   severity   information   from   the   earlier   study.   This   method   allowed   for   error   of   the   measurements  to  be  taken  into  account,  allowing  for  an  accurate  position  to  be  obtained.  GPS   data  were  transferred  and  viewed  as  a  shapefile  in  ESRI’s  ArcMap  10.2.    

 

Vegetation  Sampling    

At  each  of  the  100  plots,  a  30  cm  diameter  ring  was  used  to  delineate  the  vegetation  sample  area.  

Data  on  percent  vegetative  cover  and  biomass  of  bilberry  was  collected  at  each  site.  Percent   cover  was  estimated  visually  to  the  nearest  percentage  of  the  area  of  the  sample  circle  that  was   covered   by   bilberry,   and   recorded.   The   percent   coverage   for   other   functional   groups   (e.g.  

mosses,  grasses,  herbs,  dwarf  shrubs,  seedlings,  lichens,  etc.)  were  also  visually  estimated  to  the   closest  percentage  and  recorded.    

 

All   aboveground   biomass   originating   within   each   circle   was   cut   and   separated   into   bags   by   functional  group.  In  good  weather  conditions,  plants  were  separated  into  functional  group  in  the   field.  This  was  ideal,  as  separation  after  air  drying  (as  was  done  when  collection  occurred  in  poor   weather)  was  time-­‐consuming  and  potentially  damaging  to  the  samples.  Bilberry  biomass  was   separated  from  the  dwarf  shrub  biomass.  

 

All  biomass  was  taken  back  to  the  university  for  drying  and  weighing.  Biomass  was  dried  at  the   University   of   Eastern   Finland   in   ovens   at   60°C   for   72h.   The   samples   were   then   moved   to   a   desiccator  to  cool  prior  to  weighing.  Oven  dry  weights  were  recorded  for  all  samples.  

 

Analysis  Methods    

2001  humus  depth  data  from  before  and  after  the  fire  for  the  study  site  were  added  into  ArcMap   10.2  as  two  separate  point  files.  2014  bilberry  mass  and  cover  data  were  added  as  two  separate   point  files  as  well.  The  humus  depth  data  was  interpolated  to  create  a  surface  of  predicted  humus   depths  using  the  Interpolate  tool.    

 

Interpolation  allows  for  data  values  to  be  predicted  for  an  area,  using  a  collection  of  sample   points.  The  spatial  relationship  between  data  points  can  be  used  to  estimate  a  surface  of  values  

(12)

from  a  group  of  points.  In  our  case,  humus  depth  measurements  were  taken  10  m  apart,  but  we   wanted  to  know  estimated  humus  depth  at  points  between  the  actual  samples.    

 

Kriging  was  chosen  as  the  most  appropriate  method  of  interpolation  for  the  humus  depth  data.  

Kriging  assumes  that  distance  between  points  reflects  spatial  autocorrelation  that  can  be  used  to   explain  variation  in  the  values  of  the  created  surface.  In  our  case,  it  follows  that  the  fire  would   have  burned  with  more  similar  severity  in  points  closer  together  than  in  points  farther  away  from   each  other,  making  kriging  the  best  option.    

 

Table  1  shows  the  parameters  that  were  input  for  the  kriging  of  both  the  before  and  after  fire   humus   depth   data   files.   These   were   taken   directly   from   Laamanen   (2002),   where   a   spatial   autocorrelation  for  humus  depth  was  determined.  

 

Table  1  -­‐  Parameters  used  in  kriging  function  performed  in  ArcMap  10.2  to  predict  humus  depth   surface  for  Site  30  both  before  and  after  fire  in  2001.  Parameters  were  taken  from  Laamanen   (Table  13,  2002)  

  Type   Lag  Size   Major  Range   Partial  Sill   Nugget  

Before   Spherical   10   39   180   95  

After   Spherical   10   42   300   75  

 

The  bilberry  mass  and  cover  data  was  overlaid  on  the  before  and  after  fire  humus  depth  surfaces   (see  Figure  2).  The  Extract  Multi  Values  to  Points  tool  was  used  to  extract  the  humus  depth  before   and  after  fire  from  the  two  interpolated  surfaces  at  the  bilberry  data  points  from  2014.  This   resulted  in  two  new  values  being  added  to  the  attribute  table  of  the  bilberry  data  file  (which   included  both  mass  and  cover  data).  

 

Percent  change  in  humus  depth  was  calculated  from  the  estimated  values  of  before  and  after  fire     humus  depth  that  were  extracted.  This  gave  an  estimate  of  the  percent  change  in  humus  depth   due  to  the  fire  in  2002  at  each  bilberry  data  point  measured  in  2014.    

 

This  method  of  acquiring  humus  depth  percent  change  due  to  fire  has  high  error  associated  with   it.  Surfaces  created  by  kriging  have  error  associated  with  them,  because  the  values  across  the   surface  are  estimated  from  surrounding  existing  data  points.  Error  increases  as  distance  between   data   points   increases.   Because   our   percent   change   in   humus   depth   was   calculated   from   two   estimated  surfaces,  the  error  in  these  values  is  possibly  double  that  of  the  humus  depth  surfaces   themselves.   This   explains   why   some   of   the   points   at   which   percent   change   in   humus   was   calculated  ended  up  with  a  negative  value.    

 

(13)

The  negative  values  were  removed  from  the  dataset  prior  to  statistical  analysis  since  it  does  not   make  sense  for  humus  depth  to  increase  during  a  fire.  A  possible  alternative  might  have  been  to   change  negative  values  to  0  for  analysis,  but  due  to  the  large  number  of  points  with  negative   percent  difference,  it  was  thought  that  this  would  probably  bias  results.  Removal  of  the  points   ensured  that  areas  of  very  low  fire  severity  were  not  over-­‐represented  in  the  data,  which  could   have  been  the  case  if  negative  values  were  simply  changed  to  0.  This,  however,  likely  resulted  in   low  fire  severity  to  be  under-­‐represented  in  this  study.  

 

Statistical  Analysis    

A  two-­‐tailed  t-­‐test  was  used  to  evaluate  the  difference  in  average  dwarf  shrub  biomass  (g/ha)   before  the  fire,  after  the  fire  and  in  2014.  This  gave  an  average  indication  of  recovery  of  the  site   in  the  13  years  since  the  fire.  

 

Multiple  linear  regression  was  used  to  analyze  the  data  set  gathered  in  2014.  Separate  models   were  run  for  the  response  variables  (Y)  bilberry  cover  (%)  and  bilberry  mass  (g),  with  the  general   form  of:  

 

𝑌 =   𝛽%+  𝛽'𝑋')+  𝛽*𝑋*)+ 𝑒)    

where  X1  was  percent  decrease  in  humus  depth  and  X2  was  month  of  bilberry  sampling.  The   interaction  between  percent  decrease  in  humus  depth  and  date  was  found  to  be  insignificant  in   both  regressions,  so  the  model  was  simplified  to  the  one  shown  above.  

 

X2  was  a  dummy  variable,  where  X2=0  when  the  sample  was  taken  in  June  and  X2=1  when  the   sample  was  taken  in  July.  This  allowed  for  the  effect  of  sampling  date  to  be  taken  into  account   when  looking  at  the  effect  of  percent  change  in  humus  depth  on  bilberry  mass/cover.  Samples   taken   in   July   were   in   general   heavier   and   had   higher   cover   because   the   growing   season   was   further  along.  This  is  to  be  expected,  and  not  of  much  interest  in  our  study.    

Results  

 

Dwarf  shrub  biomass  was  negatively  affected  by  fire,  with  biomass  decreasing  from  862.4  kg/ha   to  251.1  kg/ha  due  to  the  fire  in  2001  (Figure  1).  By  2014,  dwarf  shrub  biomass  was  1093.1  kg/ha,   which  was  significantly  higher  than  the  2001  after  fire  measurements  (p<0.01;  Figure  1).  In  fact,   by   2014   dwarf   shrub   biomass   had   slightly   surpassed   the   biomass   from   before   the   fire.   This   relationship  was  found  to  be  marginally  significant  (p=0.06).  

 

(14)

Figure  1  Dwarf  shrub  aboveground  biomass  in  2014  (n=83),  before  fire  in  2001  (n=33)  and  after  fire  in  2001  (n=29).  The  letters    

above  the  bars  indicate  statistical  significance,  with  ‘a’  being  statistically  significant  from  ‘b’  at  α=0.05.  Data  for  Before  and  After   Fire  are  from  the  thesis  written  by  Laamanen  (2002).  

Figure  2  shows  the  percent  cover  and  mass  of  bilberry  overlaid  on  the  fire  severity  surface.  The   larger  circles  and  darker  colours  of  the  circles  on  the  map  indicate  where  bilberry  percent  cover   (red)  and  mass  (green)  were  highest.  These  spots  tend  to  correlate  with  the  lighter  grey  areas  of   the  fire  severity  surface,  where  percent  decrease  in  humus  depth  was  lowest.  The  smaller  circles   tend   to   land   on   areas   with   higher   fire   severity   (darker   grey/black).   Therefore,   with   visual   interpretation  of  this  map,  some  relationship  between  fire  severity  and  bilberry  growth  can  be   seen.  

 

The  regression  analysis  resulted  in  the  following  equations:  

 

𝑀𝑎𝑠𝑠 =  0.53 −  0.0065𝑋') +  0.30𝑋*)          (1)   𝐶𝑜𝑣𝑒𝑟 =  0.97 −  0.010𝑋')+  0.40𝑋*)            (2)    

The  regression  indicated  that  sampling  month  and  percent  change  in  humus  depth  explained  14%  

of   the   variation   in   bilberry   mass   (R2   =   0.14,   F2,57   =   7.66,   p   =   0.0011;   Figure   3).   Both   percent   decrease  in  humus  depth  and  date  were  both  statistically  significant  factors  in  the  regression  (p  

≤  0.05).    A  1%  decrease  in  humus  depth  predicted  a  0.65%  decrease  in  bilberry  mass  (equation   1).  For  both  months,  as  percent  change  in  humus  depth  increases,  the  mass  of  the  bilberry  plants   sampled  decreases.    

 The  sampling  month  and  percent  change  in  humus  depth  explained  17%  of  the  variation  in   bilberry  percent  cover  (R2  =  0.17,  F2,57  =  5.819,  p  =  0.005;  Figure  4).  Both  percent  decrease  in   humus  depth  and  date  were  both  statistically  significant  factors  in  the  regression  (p  ≤  0.05).  A  1  

(15)

%  increase  in  humus  depth  resulted  in  a  1%  decrease  in  the  percent  cover  of  bilberry  (equation   2).  These  results  indicated  that  areas  of  higher  fire  severity  in  2001  had  lower  bilberry  plant   mass  and  percent  cover  in  2014.  

     

   

Figure  2  Bilberry  percent  cover  (red)  and  mass  (green)  measured  in  2014  overlaid  on  the  humus  percent  decrease  (fire  severity)   map  

(16)

 

Figure  1  Relationship  between  log10  bilberry  mass  and  percent  decrease  in  humus  depth  with  date  of  sample  collection  in  2014    

as  a  factor:  June:  Date=0;  July:  Date=1.  Bilberry  mass  is  slightly  higher  in  July  than  June.  Higher  fire  severity,  indicated  by  higher   percent  decrease  in  humus  depth,  resulted  in  lower  bilberry  mass  (R2  =  0.18,  F2,57  =  7.66,  p  =  0.0011).  

 

Figure  2  Relationship  between  log10  bilberry  cover  and  percent  decrease  in  humus  depth  with  date  of  sample  collection  in  2014    

0.00 0.25 0.50 0.75 1.00

0 20 40 60

Percent decrease in humus depth

Log 10 bilberry mass (g)

Date 0 1

0.0 0.5 1.0 1.5

0 20 40 60

Percent decrease in humus depth

Log 10 bilberry cover

Date 0 1

(17)

Discussion  

 

Dwarf  Shrub  Biomass    

Dwarf  shrub  biomass  in  2014  was  similar  to  the  aboveground  biomass  that  was  present  in  2001   before  the  fire,  at  about  850-­‐1000  kg/ha  (Figure  1).  2001  pre-­‐fire  and  2014  biomass  were  both   significantly   higher   than   the   biomass   after   the   fire,   which   was   about   250   kg/ha.   Therefore,   aboveground  dwarf  shrub  biomass  was  significantly  reduced  during  the  fire  (Laamanen,  2002).    

It  also  indicates  that  the  biomass  on  the  site  as  a  whole  had  enough  time  to  recover  in  the  13   years  between  the  2014  measurements  and  the  fire.    

 

The  biomass  in  2014  was  slightly  higher,  though  not  significantly,  than  what  it  was  in  2001.  This   may  be  due  to  dwarf  shrubs  growing  better  due  to  the  fire,  reduced  competition  from  other   species,  increased  nutrient  load  due  to  fire  or  differences  in  measurement  protocols  between   the  study  in  2001  by  Laamanen  and  ours  in  2014.  

 

In  a  study  with  a  shorter  time  frame,  lingonberry  (Vaccinium  vitis-­‐idaea  L.)  had  not  yet  returned   to  pre-­‐fire  conditions  by  4  years  post-­‐fire  (Marozas  et  al.,  2013).  Looking  at  a  longer  time  period,   it  was  found  that  lingonberry  had  lower  percent  cover  on  burned  sites  than  it  did  on  control  sites,   even  14  years  post-­‐fire  (Parro  et  al.,  2009).  Finally,  a  study  done  on  the  Project  Fire  sites  found   that  in  2011,  10  years  post-­‐fire,  lingonberry  had  not  returned  to  pre-­‐fire  percent  cover  (Johnson   et  al.,  2014).  These  results  suggest  that  the  13  years  of  our  study  were  not  long  enough  for  the   dwarf  shrubs  to  return  to  pre-­‐fire  conditions.  

 

Comparing  between  these  different  studies  is  difficult,  as  the  fire  severity  and  method  of  burning   can  be  very  different.  In  the  study  by  Parro  et  al.,  the  measurements  for  unburned  control  were   taken   14   yeas   post-­‐fire,   just   in   areas   of   the   stand   that   had   not   been   burned.   Environmental   interactions   in   the   burned   stand   may   have   effects   on   even   the   unburned   areas,   potentially   making  these  plots  not  ideal  for  comparison  to  pre-­‐fire  vegetation  conditions.  

 

Also,   the   other   studies   that   were   referenced   measured   lingonberry   only,   whereas   our   dwarf   shrub   component   included   also   bilberry,   heather   (Calluna   vulgaris  L.)   and   potentially   other   species.  Though  all  of  these  species  fall  into  the  dwarf  shrub  functional  group,  it  is  possible  that   they  react  uniquely  to  fire,  and  cannot  be  assumed  to  behave  as  lingonberry  does  in  fire.  

 

Regression  Analysis  of  Cover  and  Mass    

The  regression  analysis  shows  a  significant  decreasing  trend  in  both  bilberry  cover  and  mass  with   higher  percent  decrease  in  humus  depth  (ie.  more  severe  fire).  This  implies  that  areas  that  were   more  severely  burned  in  2001  had  slightly  lower  bilberry  cover  and  mass  in  2014.  Therefore,  it   could  be  suggested  that  as  fire  severity  increases,  bilberry  growth  is  negatively  affected,  even  13   years  post-­‐fire.  

(18)

The  explanatory  power  of  the  model,  however,  is  not  very  high,  as  can  be  seen  by  the  low  R2  for   both  mass  and  cover.  This  is  typical  in  biological  systems  where  many  factors  can  affect  a  single   response.  The  model  used  in  this  study  is  quite  simple,  and  does  not  capture  all  of  the  sources  of   variation   that   may   influence   bilberry   growth   post-­‐fire.   Other   factors   that   should   be   studied   include:   patterns   with   co-­‐occurring   species,   soil   moisture/nutrient   conditions   and   variability   between  sites.  Therefore,  the  conclusions  drawn  from  these  results  cannot  be  relied  upon  with   high   certainty.   More   research   will   be   required   to   obtain   definitive   results   pertaining   to   fire   severity  and  bilberry  growth.  

 

Previous   studies   have   generally   found   a   slower   recovery   time   for   bilberry   as   fire   severity   increases.  For  example,  in  a  study  looking  at  bilberry  recovery  5  years  post-­‐fire,  bilberry  had  not   recovered  at  all  (Schimmel  and  Granström,  1996).  Bilberry  is  a  sprouter,  meaning  it  revegetates   using  the  rhizomes  in  the  ground.  It  has  been  found  that  sprouters  tend  to  have  lower  cover  after   fire  as  fire  severity  increases,  due  to  the  effects  on  underground  rhizomatous  structures  (Wang   and  Kemball,  2005).  

 

In  a  study  on  slash  burning,  it  was  found  that  bilberry  recovery  post-­‐fire  was  very  slow,  with  cover   not   increasing   substantially   in   the   first   10   years   after   fire   (Ruokolainen   and   Salo,   2006).   This   supports   our   conclusion   that   13   years   may   not   be   long   enough   for   severely   burned   areas   to   recover.    

 

Though   the   results   of   our   study   were   not   definitively   conclusive   due   to   the   low   explanatory   power  of  our  model,  previous  studies  do  support  the  trends  we  found.  Other  studies  have  found   that   high   fire   severity   can   be   harmful   to   bilberry,   and   it   can   take   many   years   for   bilberry   to   recover.  Therefore,  there  is  support  to  our  hypothesis  that  higher  fire  severity  within  a  fire  may   affect  bilberry  more  negatively.  

 

The  vegetative  structure  of  bilberry,  however,  may  influence  how  it  is  affected  by  small-­‐scale   variations  in  fire  severity.  If  vegetative  structures  of  bilberry  connect  aboveground  plants  over  a   large  area,  then  damage  to  rhizomes  in  a  small,  specific  location  may  have  negative  impacts  on   the   biomass   and   cover   of   that   entire   organism.   Bilberry   rhizomes   can   extend   up   to   5m   underground  (Maubon  et  al.,  1995),  meaning  underground  structures  can  connect  aboveground   structures  over  quite  a  large  area.  Therefore,  some  of  the  noise  in  the  model  may  be  due  to  the   non-­‐localized  effects  of  rhizome  damage  to  aboveground  bilberry  growth.  Studies  looking  at  the   impact   of   rhizome   damage   to   the   growth   of   aboveground   structures   of   bilberry   should   be   conducted.  

 

Regression  Model    

There   is   a   slight   difference   in   the   intercepts   of   the   regressions   between   2014   biomass   measurements  that  were  taken  in  June  compared  to  July.  The  cover  and  mass  of  bilberry  was  less   in  June  than  in  July,  which  is  logical  with  the  progression  of  the  growing  season,  explaining  the   different   intercepts.   This   is   not   really   of   interest   for   describing   the   effects   of   fire   severity   on   bilberry  growth,  except  that  it  should  be  taken  into  account.  

(19)

Including   data   on   the   other   species   that   were   growing   with   bilberry   could   be   helpful   in   strengthening   this   model   as   well.   The   forest   floor   of   our   site   was   completely   covered   by   vegetation,   meaning   that   there   was   no   empty   space   for   any   of   the   species   growing   there.  

Therefore,  looking  at  interactions  between  bilberry  and  the  other  species  and  functional  groups   of  plants  that  grew  in  the  area  may  give  indications  of  why  bilberry  cover  and  mass  were  what   they  were.  It  is  possible  that  post-­‐fire,  bilberry  was  outcompeted  by  other  species,  preventing  it   from  reaching  pre-­‐fire  conditions.  

 

Including  multiple  sites  would  account  for  inherent  variability  in  environment  that  is  linked  to   sites.  This  would  likely  improve  the  fit  of  the  model,  as  other  environmental  factors  that  could   influence  bilberry  growth  post-­‐fire  would  be  taken  into  account.    

 

Future  Studies    

Future  studies  should  therefore  expand  on  the  number  of  sites  that  are  measured,  the  vegetation   that  is  analyzed  and  take  into  consideration  other  environmental  variables  (microtopography,   soil  conditions,  etc.).  The  scope  of  this  study  was  not  large  enough  to  consider  all  of  these  factors,   but  they  can  influence  the  growth  of  bilberry  and  should  be  accounted  for.  

 

The  fire  severity  data  used  in  this  study  had  some  error  associated  with  it  as  well.  The  points  of   measurement  were  too  far  apart  to  capture  small-­‐scale  variations  accurately  (Laamanen,  2002).  

The  errors  in  calculations  of  humus  percent  decrease  during  the  fire  also  point  to  the  inaccuracy   of  the  fire  severity  data  (Figure  2).  In  the  future,  measurements  for  fire  severity  would  ideally  be   taken   closer   together,   and   before   and   after   measurements   would   be   taken   from   the   same   location.  This  would  reduce  the  error  associated  with  comparing  two  interpolated  surfaces.  

 

Also,   having   pre-­‐fire   bilberry   biomass   and   cover   measures   would   give   a   more   definitive   conclusion   of   the   effects   fire   has   on   bilberry   growth   after   fire.   With   before   and   after   measurements   taken   regularly   over   the   time   period   after   the   fire,   more   accurate   bilberry   response   information   could   be   gathered.   This   can   help   in   understanding   the   full   long-­‐term   response  of  bilberry  to  fire,  which  is  important  to  ecological  processes  and  services  that  may  rely   on  bilberry.  

 

For  expanding  the  scope  of  this  study  from  effects  of  fire  on  bilberry  to  applications  in  forest   management,   many   other   factors   need   to   be   considered.   Harvest   treatment,   fertilization,   thinning  practices  and  site  preparation  for  planting  are  all  part  of  the  process  of  preparing  a  stand   for  use  as  a  timber  resource.  These  activities  all  have  effects  on  the  understory  vegetation  of  the   forest   stand,   and   must   be   considered   when   looking   at   the   effects   of   forest   management   on   species  such  as  bilberry.  

 

Combining  prescribed  burning  and  harvesting,  as  would  occur  in  managed  stands,  was  studied   on  the  study  sites  in  Lieksa.  It  was  found  that  the  combination  of  the  two  disturbances  had  a   more  negative  effect  on  understory  vegetation  than  either  disturbance  alone  (Johnson  et  al.,  

(20)

2014).   Therefore,   the   combination   of   harvesting   and   prescribed   fire   may   be   harmful   to   understory  plants  such  as  bilberry.  

 Fire,  however,  can  help  reduce  the  thick  humus  layer  that  exists  in  northern  boreal  forests.  This   humus  layer  can  hinder  the  regeneration  of  trees,  making  fire  a  useful  tool  to  use  after  harvesting   (Parro   et   al.,   2009).   Therefore,   the   importance   of   considering   multiple   perspectives   when   planning  forest  management  goals  is  apparent,  and  it  can  be  difficult  to  reach  a  solution  that  is   beneficial  for  all.  

 

Current   forest   management   includes   harvesting   methods   such   as   clearcuts,   which   have   a   homogenizing  action  on  the  forest.  Clearcuts  decrease  the  heterogeneity  of  the  forest  stand  by   simplifying  the  age  structure  of  the  developing  stand,  and  by  removing  dead  wood  components   from   the   stand   (Kuuluvainen   et   al.,   1996).   Different   methods   of   forest   management   create   different  successional  paths  in  the  forest  (e.g.  Uotila  and  Kouki,  2005),  meaning  the  decision  of   what  forest  management  to  implement  is  important  for  determining  the  community  that  will   exist  on  a  site  in  the  future.    

 

Fire   is   only   one   tool   available   in   forest   conservation   and   restoration   practices.   The   above-­‐

mentioned  practices  can  also  be  modified  through  forest  management  to  have  lesser  impact  on   the  surrounding  environment  while  still  fulfilling  resource  acquisition  goals.  Future  studies  should   look  at  the  combined  long-­‐term  effects  of  fire  with  harvesting,  site  preparation,  fertilization  and   thinning  practices  on  bilberry.  

 

Implications  for  Conservation    

The  descriptive  results  of  this  study  in  Northern  Karelia,  Finland  in  combination  with  previous   studies,  suggest  that  fire  severity  in  pine-­‐dominated  stands  of  the  boreal  forest  has  a  negative   relationship  with  bilberry  cover  and  biomass  13  years  post-­‐fire.  Sites  with  higher  fire  severity  had   lower  cover  and  mass  of  bilberry.  This  could  have  some  implications  on  the  recommended  use  of   fire  in  forest  restoration  and  conservation  practices  in  Finland.  

 

Bilberry   is   a   significant   component   of   Finland’s   forest   biodiversity,   ecology   and   processes   (Turtiainen  et  al.,  2011;  Kettunen  et  al.,  2012).  Therefore,  understanding  how  fire  affects  it  is   important  in  designing  restoration  and  conservation  practices.  There  are  many  other  values  in   the  forest  that  need  to  be  considered  as  well,  such  as  timber,  wildlife,  recreation,  ecosystem   services  and  human  health.  Therefore,  goals  for  forest  restoration  and  conservation  have  many   perspectives  to  consider,  with  bilberry  being  only  one  of  them.  Below  are  recommendations  for   the  implementation  of  forest  conservation  practices  with  bilberry  as  a  key  component  of  the   goals.  

 

The  most  important  consideration  for  bilberry  in  forest  conservation  is  the  fact  that  it  has  been   on  a  decline  in  Finland  over  the  past  decades.  Therefore,  conservation  practices  should  focus  on   reversing  this  decline.  Fire  is  an  important  tool  in  the  management  of  forests  for  multiple  uses,   but  its  utility  for  the  conservation  of  bilberry  may  be  limited.  

Viittaukset

LIITTYVÄT TIEDOSTOT

Differences between the number of berries of bilberry, lingonberry and crowberry between years (2010, 2011 and 2012) and picking treatments (control, hand raking, metal raking,

Maianthemum bifolium Oxalis acetosella Picea abies Sorbus aucuparia Trientalis europaea Vaccinium myrtillus Vaccinium

Modelling cowberry (Vaccinium vitis-idaea) and bilberry (Vac- cinium myrtillus) yields from mineral soils and peatlands on the basis of visual field estimates. Expert models

EST-SSR and cpSSR markers were used to investigate the population structure and genetic diversity of these species to obtain information useful for the development of in

The coverage of bilberry (Vaccinium myrtillus L.) was modelled as a function of site and stand characteristics using the permanent sample plots of the National Forest Inventory

The long-term effects of fertilization on the needle nutrient concentrations, growth and financial performance of a Scots pine (Pinus sylvestris L.) stand was examined in

Differences between the number of berries of bilberry, lingonberry and crowberry between years (2010, 2011 and 2012) and picking treatments (control, hand raking, metal raking,

So far, only rough estimates for the utilisation rates of wild berries in Finland have been available. One reason for this is that there has been a lack of empirical-knowledge-based