• Ei tuloksia

View of The effect of the source of nitrogen on protein fractions and their proportions in barley grains

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "View of The effect of the source of nitrogen on protein fractions and their proportions in barley grains"

Copied!
10
0
0

Kokoteksti

(1)

JOURNALOF THESCIENTIFIC AGRICULTURAL SOCIETY OFFINLAND MaataloustieteellinenAikakauskirja

Vol. 54: 155-164, 1982

The effect of the

source

of nitrogen

on

protein fractions and their proportions

in

barley grains

ULLALALLUKKA, EERO VARIS and RITVA REPO

Department

of

Plant Husbandry,

University

of

Helsinki, 00710Helsinki 71

Abstract. The effects of fertilizernitrogen, preceeding leguminouscropin rotation,and mixedcropping of barleywith field beans ontheprotein fractionsinmaturebarley grainswerestudied with the material collected from threeexperimentsitesin southernFinland, With anincrease innitrogen application,the totalN in grainsaswellasnitrogen inthe different Osborne fractions increased. The relative amountsof proteinfractions changed: prolaminincreased,glutelin remained fairlyconstant,and salt-solublefraction decreased. The preceedingleguminouscrops, pea andfieldbean,increasedthenitrogencontent inbarley aswellastheproportionof prolamin N.The share ofprolamin N in barley following leguminous plants washigherthan inbarley followingoats,where the similar totalNcontentwasduetofertilizernitrogen.

Inmixedcroppingofbarleyand field beans prolaminN inharvested barley grainsalso increased with the increased totalnitrogenduetoanincreaseeitherinfertilizer applicationorinthe share of fieldbeaninthe

mixture. In this case there was no clear difference in theproportions of prolamin Nbetween the

treatments.

The proportions of salt-soluble fractions wereslightly higherand that ofstorageprotein lowerin Finnish barleysstudied than in the results from otherstudies,where Central European cultivars with

largergrainswereused.

Introduction

With therising prices for energy and fertilizers, biological nitrogen fixation has become agoal forintensivestudies inmany countries. InFinland aswell, several research projects are conducted1J including e.g. the utilization of biologically fixed nitrogen for cereals either by growing leguminous plants preceeding the cereal crop or mixed with it.

Nitrogen (N 2) fixed by leguminous plants and thus available to the followingcereals, is in organic form and is therefore mobilized more slowly thanN from fertilizers. The effects ofa lateapplication of fertilizerN onthe grain yield and itsprotein content andquality has been much studied(SELKE

!) The projectsareprimarily financedbyTheAcademyof Finland andbySITRA, the Finnish National Fund for Research andDevelopment.

(2)

1940,MICHAEL 1963, ZOSCHKE 1973). It is known thata late application of fertilizer N increases the protein content of the grain,which improves the baking characteristics of grains for flourbutnot the feeding quality ofcereals forfodder, except foroats. Very little is known about the effects ofbiologi- callyfixedNonthe qualityof proteinincereals. Inpresentstudy, theprotein quality in barley grown succeeding or mixed with leguminous plants was

investigated using OSBORNE’s fractioning.

Material and methods

The material analysed consisted of three experiment series. In twoseries the effects ofNapplication and effects ofthe preceeding crop inrotation on

barleyprotein werestudied. In the third seriestheeffects of mixed cropping of barley and field bean {Vida

fab

aL.) on barley protein were studied. In brief, the experiments were as follows:

Trial series 1:

Factors: - N application (40 and 80kg/ha)

- Preceeding crop in rotation (oats, pea, field bean, pea-oats pea

dominating,pea-oats dominating) (split-plot design) Trial series 2:

Factors: - N application (40 and 80kg/ha)

- N application onpreceeding crop inrotation (12, 50 and 88kg/

ha)

- Preceeding crop (oats, pea and field bean) (split-split-plot) Trial series 3:

Factors: - N application (40 and 80kg/ha)

- Barley-field bean mixtures (split-plot)

The trials were carried out at three places in southern Finland: on the Viikki ExperimentalFarm oftheUniversity of Helsinki,on theExperimental Farm of Hankkija at Hyrylä, and on Satakunta Experimental Station ofthe Agricultural Research CentreatPeipohja. All thefarms are situated between

60°N and 61°N. The yieldsof trials in each series were used for analyses1).

The barley cultivar used in series 1 and 2 was Hankkija 673. In series 3 cultivars Hankkijan Pokko and Hankkijan Aapo were used.

Protein was fractioned using the method developed by KOIE and

NIELSEN (1977). Lipids were, however, not removed because they did not change the amount of extracted proteins. Extracted with this method, prolamin contains all the protein with low lysine content (<2 %) (MIELIN and SHEWRY 1979). N in protein fractions was determined with KJELDAHL techique. In this study, most attention was paid to prolaminN considering that variation observed in itscontentwould wellreflect protein quality ofthe grain.N inthe otherfractionswasdetermined aswell,butnonproteinN, and

'•The results forgrainandprotein yields obtainedwillbegiven inalater paper.Here,onlythe resultson protein fractioningaregiven.

(3)

water- and salt-solubleN(albumins and globulins)werenot separated. They were all included infraction I.Fraction II contains prolamin and fraction 111 glutelin.N extracted in these threefractions corresponded from90 to 100per

cent of the total N. The proportion of residue not separately determined remained in most cases below 5percent.

Results and discussion

The results of protein fractioningof barley grainsarepresentedinFigures 1 to3and Tables 1to3. Napplicationtobarleyatsowingincreased prolamin N in almost all the treatments, in which total N increased. Partly due the smallmaterial,thechanges werenot always statistical significant. GlutelinN seemed to rise with increasing rate of nitrogen application, but as well absolutely and relatively less than the prolamin N. Relatively, the propor- tionsof nitrogen infractionschangedas follows(Tables 4and 6):prolaminN

Fig. 1.Effects of therateofnitrogen applicationandthe preceeding cropinrotation ontheamountand quality of proteininbarley. Nitrogenpercentages of the fractions indicateproportion ofnitrogen in the DM of the wholesample.Thus thesumofthepercentages total nitrogenpercentage.

(4)

Table1.Analysis ofvarianceontheeffects ofnitrogen application and thepreceedingcroponthe totalN inbarley andonNcontentsinthe differentproteinfractions (Fig. 1).

Factor Albumin+ Globulin Prolamin Glutelin Total

+nonprotein N,% N,N,%% N,N,%% N,N,%% N appli-

cation =A Proceeding

crop =B xx

AXB x o

Significanceof differences

- =P>o.l o =Pco.l x=P<0.05 xx =PcO.Ol

increasedmarkedly, salt-solubleNdecreased,and glutelinNremained about the same inall levels of nitrogenapplication. A corresponding regularity in the changes of protein fractionswith the increasing protein contentin grain

wasalready observed byBISHOP (1928), and several others afterhim.

In the trials concerning the effect ofthe preceeding leguminous crop in rotation on protein quantity was also statistically significant. By increasing the nitrogen content ofthe following barley in rotation, pea and fieldbean markedly affectedthequantity ofprolaminN(fractionII) in barley. Also the

Fig. 2. Effects ofnitrogen applicationtothepreceedingcropand of thepreceeding crop itselfonprotein qualityin barley dressedwithdifferentnitrogen doses.

(5)

Table 2. Analysis of variance on the effects of nitrogen application, of nitrogen application onthe proceedingcrop,and of the proceedingcropitselfonthe totalN inbarley andonNcontentsin the differentprotein fractions(Fig. 2).

Factor Albumin+Globulin Prolamin Glutelin Total

+ nonprotein N,% N,N, %% N,N,%% N,N,%% N

during sowing =A o

Napplicationduring

proceeding year=B x

Preceeding crop =C xx o x

A xB B x C A x C

Axß xC xx

Significance ofdifferences,seefootnoteinTable 1.

Fig. 3. Protein fractions of

barley following oats-field be-

an mixtures with different share of field bean and dressed with twodoses ofnitrogen.

Years 1980-81.

(6)

Table3. Analysis ofvarianceon the effects ofnitrogen application and crop mixtureonNcontentin barleyandonNcontentsinthe differentprotein fractions(Fig. 3).

Factor Albumin+ Globulin Prolamin

+ nonproteinN,% N,%

Glutelin N,%

Total N,%

N application =A Cropmixture =B A XB

o xx

XX XX

Significanceofdifferences,seefootnoteinTable 1.

Table 4. Effect of nitrogen applicationonNcontentinbarley andontherelativeproportions ofN in differentproteinfractions inexperiments presented in Figure 1.

Relative proportion ofNin fractions of the extracted

nitrogen Total

Napplication Fraction I,% Fraction 11,% Fraction 111,% N,%

N, 40kg/ha 33.5 46.1 20.3 1.80

N, 80kg/ha 33.1 46.4 20.4 1.85

Table5. Effect of the preceedingcroponNcontent inbarley andonthe relativeproportions ofN inthe

differentprotein fractionsin experiments presented in Figure 1.

Relativeproportion ofN infractions of theextracted

nitrogen Total

Preceedingcrop Fraction I,% Fraction 11,% Fraction 111, % N,%

Oats 34.2 44.5 20.8 1.81

Pea 32.6 46.8 20.3 1.82

Field bean 32.4 47.9 19.8 1.86

Mixed pea-oats,

pea dominating 33.0 46.9 20.2 1.84

Mixed pea-oats,

oats dominating 34.0 45.5 20.5 1.82

Table6. Effect ofnitrogenapplicationonthe relativeproportions ofN inthe differentproteinfractions inbarley in experimentspresentedinFigure 2.

Relativeproportion ofN infractions ofthe extracted

nitrogen Total

N application Fraction I,% Fraction 11,% Fraction 111,% N,%

N, 40 kg/ha 32.8 47.7 19.4 1.79

N, 80 kg/ha 30.9 49.4 19.6 1.95

(7)

Table 7. Effect ofnitrogen application of thepreceedingcrop on the relativeproportions ofN in the differentproteinfractions inbarley inexperiments presented inFigure 2.

Relative proportionofN infractions of theextracted

nitrogen Total

Napplication Fraction I,% Fraction 11,% Fraction 111,% N,%

N, 12 kg/ha 31.1 48.8 20.1 1.82

N, 50kg/ha 31.8 48.4 19.8 1.87

N, 88kg/ha 32.8 48.5 18.7 1.91

Table8. Effect ofthepreceeding croponthe relativeproportions ofNin the differentproteinfractionsin barley in experiments presented in Figure 2.

Relativeproportion ofN infractions of the extracted

nitrogen Total

Preceedingcrop Fraction I,% Fraction 11,% Fraction 111,% N,%

Pea 32.2 48.2 19.5 1.91

Field bean 30.7 49.7 19.5 1.88

Oats 32.7 47.7 19.6 1.82

Fig. 4. Theregression lines between totalNandprolamin N inbarley grainsgrownafteroats,peaand field bean.

(8)

relative proportion ofprolamin N increased and the proportion of nitrogen infractionI decreased(Tables 5and 8).The relative proportion of glutelinN (fractionIII) in barleyfollowingpeaandfieldbean seemed toremainslightly lower than inbarley following oats.

When single treatmentswereinvestigated separately (Figure 2, columnsa

and b) the results indicated thatN fixed by leguminous plants and available

to barley during the followingyear increased the prolamin fraction more than did the fertilizerN. Intrial series 1it wasobserved thatin barleygrains with equal N content, the content of prolamin N was higher in barley followingleguminous plants than oats (Figure 4). Similarresults have been reported by BYERS et al. (1978). Biologically fixed nitrogen is apparently

moreslowly available tothe succeedingcrop than nitrogeninfertilizers,thus

at a late stage ofgrowthbarley turns thenitrogen almost solelytoprolamin requiring little energy (MITRA etai. 1979). Correspondingly it is thequantity ofprolamin N which has been observed toincrease when fertilizer nitrogen has been applied at a late stage of growth, and with marked 15N it has been possible to show thatinthemature grain nitrogenapplied latecan be found primarily in prolamin and glutelin(MICHAEL et al., 1960).

Nitrogen from fertilizers,which had remained in soilfrom the previous growingseason, increased slightly the total nitrogen as well as the prolamin Ncontents (Figure 2),but didnot affectthe relative proportion of prolamin N (Table 7). Differences were small and significant onlyfor total N. In the trials where barley was grown inpure stand or mixed with field bean and where differentN applications were used, the relative proportion of prola- minN increased with the increasing nitrogen content ofthe grain. This was

either duetothe increasedN application orthe increased proportion of field beans in the mixture(Figure 3). In these trial series itwas notclear(Table 9),

whether theproportion ofprolamin Nincreased similarly in bothcases. This

may be true as the nitrogen taken up by cereals likely originated from fertilizers only. As leguminousplants fix part of the nitrogen they use from

Table9. Effect ofnitrogen applicationonthe relativeproportions ofN inthe differentproteinfractions of thebarley cultivars,andontotalN inthebarley-fieldbean mixture1) .

Napplication Aapo Total Mixtures,Aapoand bean Total

kg/ha I II 111 N,% I II 111 N,%

40 30.7 47.0 22.2 1.78 29.4 50.7 19.9 2.27

80 28.8 49.8 21.3 2.08 28.5 51.2 20.4 2.45

Pokko Total Mixtures,Pokkoandbean Total

I II 111 N,% I II 111 N,%

40 31.9 47.0 21.1 1.95 32.4 47.9 19.8 2.22

80 31.9 47.7 20.3 2.00 32.4 48.1 19.5 2.35

11The relative proportionsofdifferent fractions aregivenas percentagesof the extractednitrogen.

(9)

the atmosphere, more abundant amount ofNremains available to the cereal

even inalow level ofN applied.

In the present study the proportions of different fractions in barley slightly deviated from results given elsewhere(IVANKO 1971,EWART 1968).

Here the proportion ofsalt-extracted fraction I was slightly higher, and the proportion of storage proteins II and 111 correspondingly lower than in barley analysed by IVANKO with respective methods. The results obtained here can, however, be explained with the small grain size of the 6-rowed cultivars Hankkija 673 and Pokko. Therefore, the proportion of protein fraction I occurring mainly in the aleuron and testa can be higher than observed inforeigncultivars withlarger grains.The slightly higherportion of storageNand lower portion ofmetabolic N inthe third cultivar studied,the two-rowed Aapo, supports theassumption.

Acknowledgements

The presentstudywas madepossible bya grantallowed forus from the Fund ofRaisa and S. G.

Nieminenbythe scientific foundation of the FinnishAssociation ofAgricultural Graduates.We wishto

expressoursinceregratitudeto the AssociationofAgricultural Graduates andto Director and Mrs. S. G.

Nieminen.Mr. SimoHovinen, M.Sc.from the Plant Breeding Institute of Hankkijawasresponsible for

most of thefieldexperiments.Thetext wastranslated intoEnglish byMrs.Liisa-MaijaSusiluoto.

References

BISHOP, L. D. 1928.First report onbarley proteins. The composition and quantitiveestimation of barleyproteins. J.Int. Brew34: 101 118.

BYERS,M., KIRMAN, M. A.& MIFLIN, B.J. 1978.Factorsaffecting thequalityand yield of seed

protein. (Ed.) NORTON, G. Plant proteins,p. 227—243 London,Boston.

EWART,J.H. D. 1968.Fractionalextractionofcerealflourproteins.J.SciFoodandAgric 19: 241—245.

IVANKO, S. 1971. Changeability onprotein fractions and theiramino acid composition during

maturation ofbarley grain.Biol.Plant. 13; 155—164.

KOIE, B.&NIELSEN, G. 1977.Extraction andseparation of hordeins.25p. (Eds) MIFLIN, B.J.&

SHEWRY,P. R. Techniques forseparationofbarleyandmaize seed proteins.CECEur. 5687

e

Luxembourg.

MICHAEL, G. 1963. Einfluss der Diingung auf Eiweissqualitat und Eiweissfraktionen der Nahrungspflanzen. Qual.Plant. Mat.Veget. 10;253—265.

, FAUST, FI. & BLUMER, B. 1960.Die Verteilung von spätgediingten 15N inder reifenden

Gerstenpflanze unter besonderer Beriicksichtigung der Korneiweisse. Z. Pflanzenernährung.

Diing. Bodenk. 91: 158—169.

MIFLIN, B.J.&SHEWRY;P. R. 1979.The biology and biochemistry of cereal seed prolamins. Seed protein improvement in cereals.lAEA-SM-230Wien, 1979.

MITRA, K. K., BHATIA, C.R. & RABSON,R. 1979.Bioenergeticcostof altering theaminoacid compostitionofcerealgrains. Cer.Chem.56: 249—252.

SELKE,W. 1940. DieWirkung zusätzlicher sparer Stickstoffgaben aufErtragund Qualitätder Ernte- produkte. Z. Bodenk.u. Pflanzenernährg20: 1—49.

ZOSCHKE,M. 1973.StickstoffernihrungundEiweissbildung beiFuttergersten (Hordeum vulgare L.).

Vortschr. Acker-u.Pflanzenb. 2, 59p.

Msreceived May 28, 1982

(10)

SELOSTUS

Typen lähteen vaikutus ohran valkuaisfraktioidenmääriin jakeskinäisiin suhteisiin.

Ulla Lallukka, Eero Varis jaRitva Repo Helsingin yliopiston kasvinviljelytieteen laitos

Typen lähteen ja annostelun vaikutusta ohran valkuaisaineiden määriin

tutkittiin fraktioimalla jyvänvalkuainen seneri osiin. Aineistotutkimukseen saatiinHelsingin yliopistonkasvinviljelytieteen laitoksellakäynnissä olevasta Suomen Akatemian rahoittamasta biologisen typensidonnan projektista.

Aineisto käsitti kolmekoesarjaa erilaisten esikasvien sekäviljan japalkokas-

vien seosviljelyn typpilannoituksesta.

Fraktiointi suoritettiin menetelmin, joita ei ole aikaisemmin Suomessa käytetty eikä laitteisto täysin vastannut työn tarkkuudelle asetettavia vaa- timuksia. Lisäksi aineisto oli suhteellisen pieni, yleensä vain yksi tai kaksi koetta kustakin koemallista. Kun tulokset kuitenkin monelta osin olivat yhdenmukaisia muualla tehtyjenvastaavanlaisten tutkimusten kanssa, voita-

neen niiden antamaa kuvaa pitää ainakin tyydyttävän luotettavana.

Typpilannoitus ja typpeä biologisesti sitovat esikasvit lisäsivät ohran jyvän valkuaista ja sen kaikkia erikomponentteja. Vähän lysiiniä sisältävä prolamiini lisääntyi myös suhteellisesti, sen sijaan jyvänalkiossa jakuoriker- roksessa sijaitsevien aineenvaihdunnallisten valkuaisten (I fraktio) suhteelli-

nen osuus väheni valkuaispitoisuuden lisääntyessä.

Typpeä sitovien herneen ja härkäpavun viljely esikasveina muutti val- kuaisen koostumusta enemmänprolamiinityppeä sisältäväksi kuin ohralletai sen esikasville annettu typpilannoitus.

Ohranvalkuaispitoisuus nousi selvästi myös silloin, kun ohraa viljeltiin seoksena härkäpavun kanssa. Valkuaisen laadun muutokset olivat tässä tapauksessa yhdenmukaiset väkilannoitetypen vaikutusten kanssa.

Verrattaessa tuloksia useihin ulkomaisiin, todettiin, että suomalainen ohra sisälsi keskimäärin runsaammin metabolistenvalkuaisfraktioidentyppeä javähemmän varastovalkuaisten sisältämää typpeä.

Viittaukset

LIITTYVÄT TIEDOSTOT

Tornin värähtelyt ovat kasvaneet jäätyneessä tilanteessa sekä ominaistaajuudella että 1P- taajuudella erittäin voimakkaiksi 1P muutos aiheutunee roottorin massaepätasapainosta,

Työn merkityksellisyyden rakentamista ohjaa moraalinen kehys; se auttaa ihmistä valitsemaan asioita, joihin hän sitoutuu. Yksilön moraaliseen kehyk- seen voi kytkeytyä

Aineistomme koostuu kolmen suomalaisen leh- den sinkkuutta käsittelevistä jutuista. Nämä leh- det ovat Helsingin Sanomat, Ilta-Sanomat ja Aamulehti. Valitsimme lehdet niiden

The role of plant growth regulators (PGR) in nitrogen (N) fertilization of spring wheat and oats (CCC), fodder barley (etephon/mepiquat) and oilseed rape (etephone) in crop rotation

The effects of variety, soil type and nitrogen (N) fertilizer supply on the nutritive value of barley were studied with chemical analysis, in vitro digestibility and a growth

The effect of seed dressing with the antagonist Streptomyces griseoviridis on root rots and yields of wheat and barley was studied in field experiments.. In long-term field

The nutrient digestibility and protein utilization of undehydrated barley fractions: pro- tein (BP), protein fibre mixture (BPF) and distillers solids (DS) at two levels of inclu-

Feed evaluation and nitrogen balance The evaluation of the barley fractions in pig feeding involved five digestibility and balance trials and one performance trial with growing