• Ei tuloksia

Syke Proficiency test 8/2004

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Syke Proficiency test 8/2004"

Copied!
34
0
0

Kokoteksti

(1)

Suomen ympäristöke skuksen

-

Irina Mäkinen and Pirjo Sainio

326

SYKE Proficiency test 8/2004

Mineral oil hydrocarbons in water

s r • • • • r ■ • a ■ ! a

0 r ■ • r ■

• • ■ • i •

(2)

326

Irma Mäkinen and Pirjo Sainio

SYKE Proficiency test 8/2004

Mineral oil hydrocarbons in water

Helsinki 2005

FINNISH ENVIRONMENT INSTITUTE

(3)

The organizer of the proficiency test:

Finnish Environment Institute (SYKE), Laboratory Halkuninmaantie 6, 00430 Helsinki

tel. +358 9 403 000, telecopy +358 9 4030 0890

ISBN 952- I I -2020-7 ISSN 1455-0792 Painopaikka: Edita Prima Ltd

Helsinki 2005

(4)

CONTENT

INTRODUCTION

2 ORGANIZING THE PROFICIENCY TEST 4

2.1 Responsibilities 4

2.2 Participants 4

2.3 Sample preparation and delivery 4

2.4 Sample testing 5

2.4.1 Homogeneity study 5

2.4.2 Stabilitystudy 5

2.5 Comments sent by participants 5

2.6 Analytical methods 5

2.7 Data treatment 6

2.7.1 Testing of outliers and normality of data 6

2.7.2 Assigned value and its uncertainty 6

2.7.3 Target value for total standard deviation 6

2.7.4 Evaluation of performance 6

3 RESULTS AND PERFORMANCE OF THE PARTICIPANTS 7

3.1 Results 7

3.2 Estimation of performance 8

4 SUMMARY

5 YHTEENVETO

REFERENCES 9

ANNECES

1. Participants in the interlaboratory comparison 8/2004 10

2. Preparation of the samples 11

3. Results of the homogeneity study and stability studies 12

4. Comments sent by the participants 14

5.1 Analytical methods 15

5.2 Results obtained by different analytical methods 16

6. Explanations for the result sheets 17

7. The assigned values and their uncertainties 19

8. Results of each participant 20

9. Summary on the z scores 22

10. Results and measurement uncertainties reported by the participants 23

11. Example of sample chromatogram 24

12. Measurement uncertainties estimated by using different procedures 27

DOCUMENTATION PAGE 29

KUVAILULEHTI 30

PRESENTATIONSBLAD 31

3

M

(5)

M

1. INTRODUCTION

The Finnish Environment Institute carried out the proficiency test for the determination of mineral oil hydrocarbons in water by using GC methods in February 2005.

The proficiency test was carried out in accordance with the international guidelines, ISO/IEC Guide 43 1 (1), ILAC Requirements (2), ISO/DIS 13528 (3) and the Draft IUPAC/AOAC recommendations for proficiency testing (4).

The former SYKE interlaboratory comparison for analysis o f mineral oil in water was carried out in 2002.

2. ORGANIZING THE PROFICIENCY TEST 2.1 Responsibilities

The responsibilities in organizing the proficiency test were as follows:

Irma Mäkinen, SYKE, coordinator Pirjo Sainio, SYKE, analytical expert

2.2 Participants

A total of 18 laboratories from Finland and Sweden participated in the proficiency test (Annex 1). One laboratory (lab 18) has not received the information letter. They received and analyzed the samples in April 2005.

2.3 Sample preparation and delivery

The synthetic sample S 1 was prepared from the mixture of diesel and lubricating oil (see Table 1). The separately prepared solutions of known concentration of diesel and lubricating oil were mixed to prepare the addition solutions VI and V2. The sample preparation is presented in Annex 2. Before delivery, the sample ampoules were weighed to check the possible solvent evaporation.

Two water samples, one litre of each, were delivered. The sample V 1 was a lake water (the Lake Päijänne) and the sample V2 was a riverwater (the river Mustionjoki). Laboratories were asked to add the precise amount of respective addition solution (V 1: 100 µl, V2: 200 µl) into the samples.

The proficiency test took place between 9`h February and 11 "' February 2005.

The results as well as chromatogrammes were asked to return by 22"d February 2005.

(6)

Table 1. Samples of the proficiency test 8/2004

Samples Sample type

L1: the mixture of diesel/fuel and lubricating oil (1:1) 1 synthetic solution in hexane

V 1: the lake water 1 lake water + addition of the mixture

of diesel/fuel and lubricating oil (2:3) V2: the river water I river water + addition of the mixture

of diesel/fuel and lubricating oil (3:5)

2.4 Sample testing

2.4.1 Homogeneity study

Sample preparation of the synthetic solutions was tested by analysing the mineral oil mixtures in the ampoules S 1, V 1 and V2 (Annex 3). In the synthetic sample S 1 the recovery of the mineral oil content was between 95 % and 105 %. In the solutions prepared for the water samples (V 1 and V2) the obtained results were between 95 % and 105 % of the mean value.

2.4.2 Stability study

Stability testing of the samples was based on the analyses carried out at three times: once before the delivery and twice during the proficiency test. There was not found a change higher than 105 % or less than 95 % in the content of mineral oil during the testing period (Annex 3).

2.5 Comments sent by the participants

The participants commented on their results or samples or analytical methods (Annex 4).

2.6 Analytical methods

The standard method EN ISO 9377-2 has been published for analysis of mineral oil in water (5). In the proficiency test hexane was mainly used as an extraction solvent and the used volume varied between 10 and 50 ml. The samples were extracted either by shaking or stirring. The extraction time varied between 20 and 60 minutes.

The mineral oil content between n-decane (C10H22) and n-tetracontane (C40H82) was measured by GC-method (Annex 5.1). The participants have mainly used their own mixtures of mineral oil for calibration.

Only six participants used the commercial mixture from BAM. Florisil/Na2SO4 column used on the clean- up step was mainly prepared at the participating laboratory. Some laboratories used A1203 instead of Florisil.

One laboratory (lab 15) used the gravimetric method for the measurement of mineral oil after extraction.

(7)

2.7 Data treatment

2.7.1 Testing of outliers and normality of data

Before the statistical treatment, the data was tested according to Kolmogorov-Smimov normality test.

Outliers were rejected according to the Hampel test before calculation of the mean value (Annex 6). One result (lab 7) was rejected manually in robust statistics as an outlier in analysis of the sample VI , because it deviated more than 100 % from the robust mean.

2.7.2 Assigned value and its uncertainty

For the synthetic sample S 1 the calculated mineral oil content was used as the assigned value. For the analysis of the water samples V 1 and V2 the robust mean value calculated according to the robust algorithm A was used as the assigned value (Annex 6). The assigned values have not been changed, after the Laboratory 18 reported their results in April 2005. The originally calculated robust means have been used as the assigned values.

The uncertainty of the assigned value was calculated using the standard deviation based on the robust standard deviation. The uncertainties were between 2,8% and 5,5% (Annex 7).

2.7.3 Target value for total standard deviation

The target total standard deviation (stavge(, %) used for calculation of the z scores was estimated on basis of the mineral oil content of the samples, the variation of the results and the measurement uncertainties reported by the participants. The starget was 20 % (95 % confidence interval) for the analysis of the solvent sample S 1. For the analysis of the water samples Vi and V2 the slargel was 35 % and 30 %, respectively.

2.7.4 Evaluation of performance

The performance evaluation was carried out by using the z scores. The z scores were calculated using the following equation:

z = (x. — X)/s where

x. = the reported value of the participant X = the assigned value

s = the target total standard deviation (stavget).

z scores can be interpreted as follows:

I z < 2 "satisfactory" results 2 5 I z _< 3 "questionable" results I z > 3 `unsatisfactory" results.

The z scores are presented in Annex 8 and the summary of z scores is presented in Annex 9.

The organizing laboratory (SYKE) had the code 17 in this proficiency test.

(8)

7

3. RESULTS AND PERFORMANCE OF THE PARTICIPANTS 3.1 Results

The results of the standard solution (the sample S 1) showed a good agreement between the the participants (SD = 12 %) comparing with the results obtained in the former proficiency test in 4/2002 (6), when the respective standard deviation was 21 %. This is mainly due to experience in use of the standard method (EN ISO 9377).

Table 2. Summary of the proficiency test 8/2004

Analyte Sample Unit Ass. val. Mean Md SD SD% 2'Targ Num of Ac-

SD% labs cepted.

z-vai%

Min.eil-GC 1 mg%ml 12 12,22 12,07 1,625 13,3 20 16 88

V1 mg/I 1,02 1,018 1,035 0,2242 22 35 17 82

V2 mg/I 6,38 6,393 6,71 1.157 18,1 30 17 94

where,

Ass. val. Assigned value

Mean Mean value

Mean rob Robust standard deviation SD rob Robust standard deviation

SD rob % Robust standard deviation as percents

2*Targ. SD% Target total standard deviation (95 % confidence interval) in evaluation of performance Num of Labs Number of participants

Accepted z-val%Satisfied z values: the results (%), where z 2.

In the analysis of the water samples, V 1 and V2, the standard deviations were 22 % and 19 %. They were about 10%-15% lower than in the former proficiency test 4/2002 (6).

In this proficiency test two laboratories reported that their method is under construction. The extraction was mainly done by shaking (Annex 5.1).The results obtained by using shaking in extraction were mainly higher than the results obtained by stirring (Annex 5.2). In analysis ofmineral oil hydrocarbons extraction and cleanup are the most crucial steps (7). Extraction time and magnetic stirring speed are the crucial parameters particularly for the analysis of water samples (7). Some participants reported about emulsions in extraction (Annex 5.1). Emulsions are avoided by laminar stirring (7). In this proficiencytest the participants used mainly Florisil column prepared by themselves. Variances in water content of Florisi1 can affect its activity. Recoveries of hydrocarbons can decrease, ifFlorisil is highly activated. Also, the added mineral oil might be adsorbed on the walls of a sample vessel.

The small amount of C41 solution was added to the waters V I and V2 for the verification that extraction was really made with those waters. Eleven laboratories of all were sent the chromatogrammes as was asked to. In the chromatogammes of six laboratories the signal of C41 was clearly visible. An example of sample chromatogram is presented in Annex 11.

The reported measurement uncertainties in analysis of each sample varied rather much (10% - 40 %) between different participants (Annex 12).

(9)

3.2 Estimation of performance

In this proficiency test 88 % of the participating laboratories reported satisfactory results, based on the target total standard deviation 20% - 35% used in calculating of z scores in 95 % confidence interval (Annex 9). Six participants used the accredited analytical methods and 100% from their results were satisfactory.

The water samples Vi and V2 turned to be the most crucial to analyse. Some improvements in analytical techniques (e.g. extraction efficiency, clean-up) might increase the reliability of the results in future.

The Finnish proficiency test for analysis of mineral oil hydrocarbons in waters by using the GC method was carried out for the second time. These results have improved since the last comparison in 2002.

4. SUMMARY

The Finnish Environment Institute carried out the profiency test for analysis ofmineral of I hydrocarbons in waters by using GC methods in February 2005. A total of 18 laboratories from Finland and Sweden participated.

One standard solution containing a known concentration of different oils was prepared. Two solutions containing different oils were prepared to be used as the addition solutions for the preparation of water samples. One river water sample and one lake water sample were delivered.

For the synthetic sample the calculated mineral oil content was used as the assigned value. For the analysis of the water samples the robust mean value was used as the assigned value.

In this proficiency test, 88 % of the participating laboratories reported acceptable results, based on the target total standard deviation 20 %— 35 % used in calculating of z scores in 95 % confidence interval. Six participants used the accredited analytical methods and 100% from their results were satisfactory.

The Finnish proficiency test for analysis of mineral oil hydrocarbons in waters by using the GC method was carried out for the second time. These results have improved since the last comparison in 2002.

5. YHTEENVETO

Suomen ympäristökeskusjthjesti helmikuussa 2005 pätevyyskokeen mineraaliöljyn määrittämiseksi vedestä.

Pätevyyskokeessa käytettiin yhtä poikkeusta lukuun ottamatta kaasukromatografisia määritysmenetelmiä.

Pätevyyskokeeseen osallistui kaikkiaan 18 laboratoriota Suomestaja Ruotsista.

Pätevyyskokeen näytteinä oli yksi tunnetun öljypitoisuuden omaava standardiliuos ja kaksi vesinäytettä, joihin osallistuva laboratorio teki toimitetut mineraaliöljylisäykset.

Synteettiselle näytteelle käytettiin vertailuarvona laskennallista öljypitoisuutta. Vesinäytteille vertailuarvona käytettiin robusti-keskiarvoa.

Tässä pätevyyskokeessa osallistujien tuloksista 88% oli tyydyttäviä, kun z-arvojen laskennassa käytettiin 20% — 35 %:n tavoitekokonaiskeskihajontoja. Vesinäytteiden analysoinnissa esiintyi joitakin eroja analyysimenetelmän eri vaiheissa (mm. uutto, puhdistus), joilla on ollut vaikutusta tuloksiin.

(10)

Määritysmenetelmänsä akkreditoineiden laboratorioiden tuloksista 100%oli tyydyttäviä.

Pätevyyskoe mineraaliöljyn määrittämiseksi vesistä GC-menetelmää käyttäville laboratorioillejärjestettiin toisen kerran Suomessa. Tulokset olivat parantuneet edellisestä pätevyyskokeesta, joka järjestettiin vuonna 2002.

REFERENCES

Proficiency Testing by Interlaboratory Comparison - Part 1: Development and Operation of Proficiency Testing Schemes, 1996. ISO/IEC Guide 43-1.

2. ILAC Guidelines for Requirements for the Competence of Providers of Proficiency Testing Schemes, 2000.

ILAC Committee on Technical Accreditation Issues. ILAC-G 13 :2000.

Draft International Standard ISO/DIS 13528: 2002. Statistical methods for use in proficiency testing by interlaboratory comparisons.

4. Thompson, M., Ellison, S.L.R., Wood, R., September 2004 (Draft). Working document for interested parties meeting on the revision of the H- PAC/ISO/AOAC protocol for proficiency testing. Analytical, Applied and Clinical Chemistry Divisions — Interdivisional working party for harmonization of quality assurance schemes for analytical laboratories. Analytical, applied and clinical chemistry.

EN-ISO 9377-2:2000. Water quality—Determination ofhydrocarbon oil index. Part 2: Method using solvent extraction and gas chromatography.

6. Mäkinen, I., Suortti, A.-M., Huhtala, S, Pönni, S., 2002. Interlaboratory comparison 4/2002. Mineral oil from polluted soil and water. Mimeograph series of the Finnish Environment Institute no 269, Helsinki.

7. Certified Reference Materials for the determination of mineral oil hydrocarbons in water, soil and waste, 2005.

EU-HYCREF project (Contract No: G6RD-CT-2002-00854-HYCREF) — Final Technical Report.

(11)

ANNEX 1 10

ANNEX 1. PARTICIPANTS IN THE INTERLABORATORY COMPARISON 8/2004

Alcontrol Laboratories AB, Linköping, Sweden AnalyCen laboratoriot, Tampere, Finland

Borealis Polymers Oy, laboratoriopalvelut, Porvoo, Finland Ekokem OyAb, Riihimäki, Finland

Fortum Oil Oy, kehittäminen ja kenttälaboratoriot, Porvoo, Finland Fortum Oil Oy, Porvoonjalostamon laboratorio, Porvoo, Finland

Helsingin kaupungin ympäristökeskus, ympäristölaboratorio, Helsinki, Finland Insinööritoimisto Paavo Ristola Oy, Hollola, Finland

Karlshamn Kraft AB, Karlshamn, Sweden

Lahden Tiede-ja yrityspuisto, Oy, Lahden tutkimuslaboratorio, Lahti, Finland Nab Labs Ympäristöanalytiikka Oy, Oulu, Finland

Nab Labs Ympäristöanalytiikka Oy/Juve Ac, Rovaniemi, Finland Novalab Oy, Karkkila, Finland

Raisio Yhtymä, ympäristö-ja alkuainelaboratorio, Raisio, Finland SGS Inspection Services Oy, Hamina, Finland

Suunnittelukeskus Oy, Helsinki, Finland SYKE, Laboratory, Finland

Vattenlaboratoriet VA-Verket, Malmö, Sweden

(12)

ANNEX

2

ANNEX 2. PREPARATION OF THE SAMPLES

The standard solution L1

Oil type Preparation of stock solutions Preparation of sample L1 I: Diesel/Fuel oil

(BAM KS 5004) 2000 mg oil in 50 ml of hexane =>

40 mg/ml 30 ml I + 70 ml of hexane

=> 11,6 mg/ml

The prepared solution was carefully mixed and sampled into a 2 ml portions. Small amber glass bottles with a teflon-lined screw cap were used. Bottles were labelled and numbered according to filling order. The weight of each bottle was recorded.

The addition solutions VI and V2

Oil type Preparation of stock solutions Preparation of Preparation of sample V1 sample V2

I: Diesel/Fuel oil 3000 mg oj] in 50 ml of 10 ml I + 10 ml II 20 ml I + 40 ml II (BAM KS 5002) isopropanol into 100 ml of iso- into 100 ml of iso-

=> 59 mg/ml propanol => propanol =>

11,76 mg/ml 35,27 mg/ml II: Lubricating oil 3000 mg oil in 50 ml of

(BAM KS 5003) isopropanol _> 5 9 m /ml

The resulting water sample concentration 100 pl into 1 litre of 200 pl into 1 litre of water => water =>

1,18m /l 7,05m /l

The prepared solutions were carefully mixed and sampled into a 2 ml portions. Small glass bottles with a teflon-lined a screw cap were used. Bottles were labelled and numbered according to filling order. The weight of each bottle was recorded.

Solution of C41 was added into the waters Vi and V2.

(13)

ANNEX 3/1 12

ANNEX 3. RESULTS OF THE HOMOGENEITY AND STABILITY STUDIES

The solvent sample L1 and the solutions for the water samples Vi and V2 Homogeneity

Preparation and distribution of the synthetic solutions L1 (the synthetic sample), V 1 and V2 (the addition solution for the water samples) was tested by analysing three ampoules as duplicates.

Homogeneity testing 108 106

104 102 (0 98 100

G) 96 94 92

'~

~\,~~

Sample

The obtained mineral oil content was between 102 % and 104 % of the calculated mineral oil content in the tested subsamples in the solvent sample L1 or 98 % and 107 % of the mean value mineral oil content in the solutions prepared for the water samples VI and V2. In the sample ampoule V2/23 the mean value of the duplicates was 104,4 % (< 105 %).

(14)

13 ANNEX 3/2 Stability

Stability study was based on the analyses carried out three times after delivery of the samples.

Stability testing

106 1O4 - - ___ --- ___ ---- --

u!:i LO LO LO LO LO LO LO LO LO LO LO LO LO LO

_ fikfftIM

0 0 0 0 D C 0 0 0 0 O 0 D CD CD CD c c

j c'(Nj N - N('(' N(Nj NN i N

si

VI V2

Date and sample

e mineral oil content in the ampoules was between 96 % and 105 % from the calculated mineral oil content in 8" -

h February, 2005. In the sample ampoule S 1/11.2.2005 the mean value of the duplicates was 1 04, 1 % (< 105 %).

(15)

ANNEX 4 14

ANNEX 4. COMMENTS SENT BY THE PARTICIPANTS

Lab Comment Action/SYKE

5 The volume of the water samples was missing for calculation of The volume has been

the results. It was 1 litre. informed.

8 The laboratory reported the incorrect LD. The LD was corrected in the list of analytical methods.

18 The laboratory did not received the information letter. The The results were included samples had been distributed 5'h April 2005 and the samples were in the data file.

analyzed 6th April 2005.

2 The volume in the S I ampoule was only about 2 ml not 3 ml? The prepared amount of The sample V2 contained also hydrocarbons with higher boiling solutions was fixed to be point than C40 not included in the calculation of oil index. 2 ml in order to minimize the number of extra bottles.

I 1 Extraction solvent did not included n-decane and n-tetracontane 15 Gravimetric determination

(16)

ANNEX 5.1 ANALYTICAL METHODS

Lab Acidification Extraction

solvent Extraction method

Separa-

ion Emulsion Drying Florisil Injection GC-column m/mm/pm FID T°C Gas mUmin Standard Range; DL (mg/I) 1 HO hexane,50 ml shaking, 30 unnel centrif. Na2SO4 ready autom., 1 pI 3WDB-5MS 30/0,35/0,25 325 He, 5,9 BAM 0,1-20; 0,1 2H 2/ SO4 hexane,50 ml shaking, 30 unnel no probi. Na2SO4 itself LVI+split, 20 ii CP-Sil %CB 25/0,53/1 325N 20 own 0,1-5; 0,1

HG hexane,50 ml shaking, 60 unnel centrif. No itself PTV, 2 pI DB5-MS 28,8/0,25(0,25 MS-det. He, 1,3 BAM 0,05-2 hexane,10 ml stirring, 60 manual exc.hex. Na2SO4 AJ203 splitless, 2 pI DB-1 15/0,53/0,15 340 He own 0,3-8; 0,1

6 pH 2/ SO4 pentane,25 rr , 30 unnel centrif. Na2SO4 DB-5 oven

7pH 2 pentane,50 rr shaking, 30 unnel some probl. Na2SO4 ready PTV, 40p1 CP-SIL 8CB-MS 30/0,25/0,25 400 He 5,6 own 0-10; 0,02 HCI hexane,50 ml stirring, 50 unnel no pfobl. Na2SO4 itself splitless, 1 pI HP-5MS 27/0,25/250 MS-det. He 1,0 BAM 0,005-1; 0,2 HG hexane,50 ml unnel Na2SO4 itself splitless, 1 pI CP-SIL 5CB 15/0,32/0,25 325 He 1,0 own 0-2; 0, 035 10 H ~~SEO4 hexane,50 ml shaking, 20 unnel no probi. Na2SO4 itself splitless, 2 pI NB-1 15/0,32/0,1 320 He 1,5 BAM 0,1-1; 0,1

11 hexane,35 ml unnel no probi. AJ2O3 autom., 2 pI DB-5 30/0,32/0,25 350 He 2,1 BAM 0,05-20; 0,05

12H hexane,50 m1 shaking, 30 micro-

sep. some probl. No itself on-colum., 5p1 CP-SIMDIST 5/0,53/0,88 430 He 20 own 0,1-1,2; 0,1

13 hexane So)det Gravimetric

ir NaCl hexane,50 ml shaking, 30 unnel no probi. Na2SO4 itself on-colum., 0,5 pI HP 5 30/0,32/0,25 300 He 1,5 own 0,1-60; 0,1 16 H 2 hexane,50 ml shaking, 30 unnel Na2SO4 itself on-colum., 2 pI SGP BPX5 18,3/0,32/1 360 He 3,4 own 0,2-1,2; 0,03

H 2/ SOa S/M 3041 C 15

17 HG hexane,30 ml stirring, 30 no probl. No itself on-colum., 1 pl SGE DPX-5 5/0,32/1 340 He 2 BAM 0,1-7,9; 0,1

18H0

heptane+

n-tetracontane

+ decane stirring, 40 Na2SO4 AI2O3 slit-autom., 2 pI giIent 19091 12/0,32/0,25 300 0,1-2

X

(17)

z scores of the water samples V1 and V2

T-

-2.

z/V2

1;5 - 1 • 15 •- 18 - - • 7

16

-0; 1 ? 3 4 5- 6

---.----1T5- - - - ---

-- -- 7

ANNEX5.2 16

ANNEX 5.2 RESULTS OBTAINED BY DIFFERENT ANALYTICAL METHODS (the water samples V1 and V2)

Extraction procedure:

Lab I shaking 30 min, hexane 50 ml 2 shaking 30 min, hexane 50 ml 4 shaking 30 min, hexane 5 ml 5 stirring 60 min, hexane 10 ml 7 shaking 30 min, pentane 50 ml 8 stirring 50 min, hexane 50 ml 10 shaking 20 min, hexane 50 ml ml 12 shaking 30 min, hexane 50 ml 13 Soxlet, hexane

15 shaking 30 min, hexane 50 ml 16 shaking 30 min, hexane 50 ml 17 stirring 30 min, hexane 30 ml

18 stirring 40 min, heptane + decane + n-tetracontane

(18)

17 ANNEX 6/1

ANNEX 6. EXPLANATIONS FOR THE RESULT SHEETS

Results of each participant (Annex 8):

Analyte Min.oil-GC

Unit mg/kg or mg/ml

Sample The code of the sample

z-Graphics z score - the graphical presentation z-value z-score, calculated as follows:

z = (x. - X)/s, where

x = the result of the invidual laboratory ,

X= the reference value (the assigned value)

s = the target value for the total standard deviation (siarge~) Out] test OK yes - the result passed the outlier test ), H = Hampel test (a test of mean values)

Assigned value the reference value

2* Targ SD % the target tota] standard deviation (95 % confidence interval).

Lab's result the result reported by the participant (the mean value of the replicates)

Md. Median

Mean Mean

Mean rob Robust men

SD rob Robust standard deviation

SD rob % Robust standard deviation, %

SD Standard deviation

SD% Standard deviation, %

Passed The results passed the outlier test

Missing i.e. < DL

Num of labs the total number of the participants

Summary on the z scores (Annex 7):

A - accepted ( -2 < z <_ 2)

p - questionable ( 2< z <_ 3), positive error, the result > X n - questionable ( -3 _< z< -2), negative error, the result < X P- non- accepted (z > 3), positive error, the result »> X

N- non- accepted (z < -3), negative error, the result «< X (X = the reference value)

Robust analysis (Calculation of the assigned value for the samples VI and V2) The items of data is sorted into increasing order, x1 , x2, . . . , xi,. ..,x P

Initial values for X and s' are calculated as:

X'= median of x. (i = 1 ...p) s•= 1.483 median of x. —x* i (i = 1 ...p) The values of X' and s' are updated by calculating

cp =1.5s'

(19)

ANNEX 6/2 18 For each x; is calculated:

x;• = x* - (p if x; < x. - cp xi• = x* +cp ifx j >x* +cp

xi• = x; otherwise

The new values of x* and s* are calculated from:

x• = I

xi* /p

s' =1.134

I(x,* —

x')2 /(p-1)

The robust estimates x* and s* can be derived by an iterative calculation, i.e. by updating the values of x* and s' several times, until the process convergenes.

Ref: Statistical methods for use in proficiency testing by interlaboratory comparisons, Annex C (ISO/DIS 13528, Draft 2002-02-18)

(20)

19 ANNEX 7

ANNEX 7. THE ASSIGNED VALUES AND THEIR UNCERTAINTIES

Assigned values

Sample Assigned value Estimation of assigned

value Uncertainty (U = 2 u~), %

S1 12 mg/ml Calculated concentration 2,8

V1 1,02 mg/1 Robust mean 5,5

V2 6,38 mg/1 Robust mean 4,7

uc = s*/✓p where

s* = the robust-standard deviation p = the number of the results

(21)

ANNEX 8/1 20

ANNEX 8. RESULTS OF EACH PARTICIPANT

Analyze Unit Sample z-Graphics Z- value Outi Assig- 2' • Lab's ' Md. Mean I SD SD%I Pas. i Ou. l Mia- Num

I -3 -2 -1 0 +1 +2 +3 test , ned Targ result sed tai- sing I of OK value SD% led labs . Laboratory 1

Min.oi - mg/mi 1 0.500 yes 12 120 12.60 12,07 ' 12,22 1,625 13.2 15 1 i0 1 16

mg/I V1 0,000 yes 1,02 35 1,02 1,035 i 1.018 0,2242 22,0 16 1 0 117

mg/I I V2 I 1,296 yes 6.38 30 7.62 .6,71 6,393 1.157 t8,t I17 0 0 117

Laboratory 2

Min.oil- mg/ml I Si L i 0,750 yes 12 20 12.90 12,07 12,22 1,625 13,2 15 1 0 16

mg/I V1 F 0,168 yes 1,02 i 35 1,05 1,035 i 1,018 0,2242 22,0 I16 1 0 17

mg/I V2

H

0,951 yes 6,38 30 j 7,29 6,71 16,393 11,157 18,1 17 0 0 17

Laboratory 3

Min.oil-GCmg/ml Si -1,168 yes 112 20 10,598 12,07 12,22 1,625 113.2 15 1 0 16

mg/I V1 : -0,656 i yes 1,02 1 35 0,903 1,035 1,018 0,2242 16 1 0 17

mg/I V2 r -0,247 yes ! 6,38 130 6.144 6,71 6,393

122,0

1,157 18.1 17 0 0 117 Laboratory 4

Min.oiI-GCmg/I Vi -2,409 , yes 11,02 35 0.59 11.035 I 1.018 ,0.2242 122,0 116 1 0 17 Laboratory 5

Min.oi - mg/ml Si _ 1 .0,667 yes 12 20 111,2 12.07 12,22 1,625 i 13,2 15 li 1 i0 16

mg/I V1 i -1,059 yes 1,02 35 10,831 1.035 1,018 0.2242 1 22,0 j16 1 0 17

mg/I V2 1-1.452 yes 6,38 130 4,99 6,71 6.393 1,157 18,1 1 17 0 0 17

Laboratory 6

Min.oiI-GC! mg/mi Si j .3,750 i yes ! 12 1 20 16,5 12,07 ' 12,22 1.625 1 13,2 '1,15 1 10 16 mg/I V1 j i ~, l' 0.952 yes' 1.02 l35 1,19 11,035 1.018 0.2242 22,0 16 1 iO 17 mq/1

~

i V2 il X0,345 yes i6,38 '30 6,71 16,71 6393

i' ~

11,157 1 8. 1 !17 0 10 117 Laboratory 7

in.oil- j mg/mi Si i1-1.917 I yesil2 20 19,70 12,07 12.22 11.625 ;13,2 !15 1 0 16

m /I V1 6,667 j H 1,02 35 2.21 1,035 11,018 0,2242 22.0 i 16 li t 0 17

mg/I V2 l 11.254 yes j 6,38 30 i 7,58 1 6,71 1 6.393 11.157 ' 18.1 H 17 ! 0 ' 0 ! 17 Laboratory 8

Min.oU-C mg/ml St l 0,333 ; yes ! 12 20 12,4 i 12,07 12,22 j 1,625 13.2 'i 15 1 0 mg/I Vt i -1.457 yes 1,02 35 0,76 i 1.035 1,018 i0,2242 22.0 1'16 11 0

~16 17

mg/l V2 2,027 yes 6.38 30 4.44 6 71 63g3 : 1 157 18 1 !, 1 7 10 0 17

Laboratory 9

Min.oul-GC mg/mi Si I-0.417 I yes 12 120 i 11.5 12,07 1 12,22 j 1,625 113,2 !15 1 10 16

mg/I V1 -0.213 yes 1,02 35 0,982 1.035 ~ 1.018 10,2242 22,0 16 1 0 17

mg/1 V2 l 0,366 yes .6.38 30 6,73 6,71 6,393 1,157 18,1 I' 17 0 10 17 Laboratory 10

Min.oil-CC mg/mi St 1,083 'yes 12 :20 10.7 12,07 12.22 1,625 13.2 ;:15 1 0 16

mg/I V1 i -1,513 j yes 1,02 35 0,75 1,035 1,018 0,2242 22.0 16 !1 IO 17

mg/I V2 i-1672 yes 6.38 30 .4,78 6.71 6,393 1,157 118,1 ,,17 10 0 17

Laboratory 11

in.oil- mg/mi Si U ~— ~ 1,075 yes 12 ' 20 13,29 i 12,07 12.22 11,625 13.2 L 1 5 1 j0 16

mg/I I V1 i 0.448 yes 1,02 35 1,10 ! 1,035 j 1,018 '0,2242 22,0 16 1 0 17

mg/i V2 _ 110,282 i yes 6,38 30 6,65 j6,71 6.3931.157 18.1 17 0 0 17

Laboratory 12

Min.oiI-GCI mg/mi Si 10250 I yes 112 20 12.3 ~ ! 12,07 '2.22 1,625 1 13.2 15 1 1 0 16

mg/I V1 i i-0,448 yes 1,02 35 10,94 11,035 1 1,018 10.2242 1 22.0 16 1 0 17

mg/I V2 '10.209 yes 6,38 30 16,58 6.71 16,393 1.157 i 18.1 ,117 I0 i0 17 Laboratory 13

Min.oil- mg/ml Si ! -5,417 H 12 j 20 5.5 12,07 12,22 1,625 113,2 15 1 I0 i 16

mgll V2 1 -1.964 yes 1 6,38 30 45 16,71 6.393 11.157 X 18,1 ~ 17 0 !0 117

Laboratory 14

Min.oi - mg/I V1 I I '2,521 i yes 1.02 135 ! 1.47 ! 1,035 1,018 0,2242 122,0 16 1 10 117 mgll V2 L —. .1.014 . yes : 6,38 1 30 i 5,41 6.71 6.393 ! 1,157 t 8, t 17 0 0 j 17 Laboratory 15

MinoiI-CC mgrml Si ;i a 0,183 yes 12 20 11,78 1207 1222 1.625 13.2 lib t 0 d

mg;l vi l 0.952 yes 1.02 1 35 11.19 1,035 ,1,018 j0,2242 122.011 16 t ~0 it7 ' mg'l . V2 I' 1,390 yes 6,38 30 ' 7,71 16.71 ' 6.393 ' 1.157 18.1 I I 17 1 0 0 i7 Laboratory 16

Min.oil- • mg/ml Si I , 11,750 yes 112 :20 i 14.1 12.07 1222 '.,625 113.2 ; 15 l 1 0 1 16

myll V1 10,616 yes 1.02 135 1,13 11.035 1,018 10.2242 j22.6 16 1 !0 17

mgl V2 !!0.481 yes 6.38 30 16.84 16, 7 1 '6.393 '1.157 119.1!l17 0 '0 i 17

Outlier test failed. C - Cohcran. G1 - Grubbs(t-outler algorithm), G2 - Grubhs(2-oull ers algorithm). H - Hampel, NI - manual

SYKE - Interiaboratory comparison test 8,2004

(22)

21 ANNEX8/2

Analyze Unit Sample z-Graphics j Z- value Outl Ass g- Lab's i Md. Mean j SD SD%' Pas- Outl Mis- Num

3 _2 -1 0 +1 ,2 r3l lest ned T result I sed fai- sin 9 of

OK 1 value SD%p led labs

Laboratory 17

n.oil- mg/ml Si -0250 yes 12 20 11.7 12.07 12,22 1.625 13.2 15 1 I0 ~ 16

mg/I V1 0.224 yes 1.02 35 1,06 1.035 1,018 0.2242 22.0 16 1 0 17

mg/I V2 _ ,0.439 yes ! 6.38 I30 6,80 6.71 6.393 1.157 18,1 ,1 17 0 10 17

Laboratory 18

in.oil- mg/ml Si V 0.058 yes 12 ~ 20 1207. ! 1207 12.22 11.625 • 13.2 '15 1 0 . 16

mg/I

~

V1 I FI1,681 yes 11,02 35 1132 1,035 1,018 0.2242 22,0 116 1 17

mgll V2 :i 1.599 • yes 16.38 130 7.91 16.71 . 6.393 11.157 18.1 I, 17 10 1 0 1 17

Outlier lest lagled C - Cohtran, G1 - Grubbs(1-outlier algorithm). G2 - Grubbs(2-outliers algoaihrrv). H - Harrpel, M - manual SYKE - Iraierganora:ory to'vparastn less 8,2004

(23)

ANNEX 9 '.2

ANNEX 9. SUMMARY OF THE z SCORES

Analyte . -I Sample\Lab 1 . 2 3 -; 4 , 5 6 •7 8 9 10 11 12 . 13 14 15 16 17, 18

~ Min.oil-GC Si A A A A P A A A A A A N A A A A 88

V1 A A A n A A P A A A A A . p A A A A 82

~ V2 A A A A A A n A A A A A A A A A A 94

100 100 100 0 100 67 67 67 100 100 100 100 50 50 100 100 100 100

Accredited i yes yes yes yes yes yes

A - accepted (-2 < Z < 2), p - questionable (2 < Z < 3), n - questionable (-3 < Z < -2), P - non-accepted (Z > 3), N - non-accepted (Z < -3), O/ - percentage of accepted results

Totally accepted, % In all: 88 In accredited: 100

SYKE - Interiaboraiory comparisontest 8i2004

(24)

23 ANNEX 10

ANNEX 10. RESULTS AND MEASUREMENT UNCERTAINTIES REPORTED BY THE PARTICIPANTS

Analyytti (Analyte) Min.oil-GC Nayte (Sample) Si

- — — — — — — — — — — — — — — — — — — - E 3

m E 1

I,a

1,6 1,4 1,2

E 1

0,8 0,6 0,4 0.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1!

Laboratory

Analyytti (Analyte) Min.oil-GC . Näyte (Sample) V1

imr• 1

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 11

Laboratory

Analyytti (Analyte) Min.oil-GC Näyte (Sample) V2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Laboratory

SYKE . Inlerlaboralory comparison lest 812004

11 10 9 8 7 E6 C)

5 4 3

n

(25)

Current Chromatogram (s)

FID1 A, (050209'\006B0401.D)

Norm. ii o1 X

(D; ! x~ x

o

180

l I l (•)~ N p0~

160-~

140

120

1 I ! kokonaishiilivedyt

100 1 11 I'

i I

80 •

1

n~bi

(

11 iIil

z

60- ), i

ao C 10 II j I'~ 040

20 ! I ti DUI l i` jl

i. '

y~ I

J i

P.. r; `_._-.1 , I .1 ' N _

0 2.5 5 7.5 10 12.5

Ni A

strument 1 6/16/2005 10:07:45 AM MS Page 1 of 1

(26)

Current Chromatograms)

FID1 A. (0502 0910 1 5B1401.D)

CD lO0

~ eå

S.

I f i

C40

II c

co co Na°~

c ea 041

kokonaishiilivedyt I

II 010

I I I

I 1 I

N

x

strument 1 6/21/2005 10:43:05 AM MS Page 1 of i

(27)

I

Current Chromatogram(s)

FID1 A. (050209\017B1701.D) Norm. a ~'.

700-

600

I I L

i ill.

I ! , i l

500 1

I I I ~. ~i~'' kokonaishiilivedyt

,

' I! : I, I I

400 4 ti

H i

i j I Lr; ye

a.

1 ~P

C40

Soo -

I. IJ

Ii

i

cn

II ö 1~1

200

r

C 10 i I 14 yea

1 II 041

i' 9 \

100 —' ill IIII i~ I i i~

J ~i ~11 ~I II III~~ ~~•l ~'~ I I, 'I i I l i ' I

1

, _ :.

9a~I

li y la, ;~~,'i! '`~~ a~

J

0 2.5 5 7.5 10 12.5 15 17.5

istrument 1 6/21/2005 10:35:44 AM MS Page 1 of 1

(28)

27 ANNEX 12/i

ANNEX 12. MEASUREMENT UNCERTAINTIES ESTIMATED BY USING DIF-

FERENT PROCEDURES

Analyytti (Analyte) Min.oil-GC Nayte (Sample) Si

35 30

_T 25

C_

C 20 N

C 15

10 5

N M V (D 1-

L_

U) U) C) U) N

Analyytti (Analyte) Min.oil-GC Näyte (Sample) V1

35 30 25 T C_

20 QJ

C 15

10 5

N c) V LO

L_ L_ L_ L_ L L_

G) U) 4) U) Q) Q)

L

Analyytti (Analyle) Min.oil-GC Näyte (Sample) V2

35 30

° 25

10 5

N C) v p t—

U) 4) Q) U) N N

2 Z

S-)KE - Inl?'~Jbor.)tO , CO^`Ddr-Son lest 8'2004

(29)

ANNEX 12/2

Measurement uncertainties were estimated by using the procedures as follows:

I . the variation of the results in X chart (for artificial samples)

2. the variation of the results in X chart and the variation of the replicates (r- or R- chart for real samples) 3. the variation of the data obtained in analysis of CRM

4. the data obtained in method validation (and IQC)

5. the EURACHEM-Guide "Quantifying Uncertainty in Analytical Measurements"

6. the NORDTEST report TR 537 7. other procedure

(30)

29

Documentation page

Publisher Finnish Environment Institute (SYKE) Date

Juni 2005 Author(s) Irma Mäkinen and Pirjo Sainio

Title of publication SYKE Proficiency test 8/2004 (mineral oil hydrocarbons in water) Parts of publication/

other project publications

Abstract fhe Finnish Environment Institute carried out the profiency test for analysis of mineral oil hydro- arbons in waters by using GC methods in February 2005. A total of 18 laboratories from Finland and Sweden participated.

One standard solution containing a known concentration of different oils was prepared. Two olutions containing different oils were prepared to be used as the addition solutions for the prepara- ion of water samples. One river water sample and one lake water sample were delivered.

or the synthetic sample the calculated mineral oil content was used as the assigned value. For the analysis of the water samples the robust mean value was used as the assigned value.

In this proficiency test, 88 % of the participating laboratories reported satisfactory results based on he target total standard deviation 20% 35% used in calculating of z scores in 95 % confidence interval. Six participants used the accredited analytical methods and 100% from their results were

atisfactory.

The Finnish proficiency test for analysis of mineral oil hydrocarbons in waters by using the GC method was carried out for the second time. These results have improved since the last comparison in 2002.

Keywords water analysis, mineral oil, hydrocarbons, environmental laboratories, proficiency test, interlaboratory comparisons

Publication series Suomen ympäristökeskuksen moniste 326 and number

Theme of publication Project name and number, if any Financier/

commissioner Project organization

ISSN ISBN

1455-0792 952-11-2020-7

No. of pages Language

31 English

Restrictions Price

Public

For sale at/ Finnish Environment Institute, Customer service distributor E-mail: neuvonta.syke@ymparisto.fi

tel. 358 9 4030 0190, fax 358 9 40300 190

Financier Finnish Environment Institute, P.O.Box 140, FIN-00251 Helsinki, Finland of publication

Printing place and year Edita Prima Ltd, Helsinki 2005 Other information

(31)

30

Kuvailulehti

Julkaisija Suomen ympäristökeskus (SYKE) Juikaisuaika

Kesäkuu 2005 Tekijä(t) Irma Mäkinen ja Pirjo Sainio

Julkaisun nimi SYKE Proficiency Test 8/2004 (mineral oil hydrocarbons in water) SYKE pätevyyskoe 8/2004 (mineraaliöljyt vedestä)

Julkaisun osat/

muut saman projektin tuottamat julkaisut

Tiivistelmä Suomen ympäristökeskus järjesti helmikuussa 2005 pätevyyskokeen mineraaliöljyn määrittämisek- si vedestä. Pätevyyskokeessa käytettiin yhtä poikkeusta lukuun ottamatta kaasukromatografisia määritysmenetelmiä. Pätevyyskokeeseen osallistui kaikkiaan 18 laboratoriota Suomesta ja Ruotsista.

Pätevyyskokeen näytteinä oli yksi tunnetun öljypitoisuuden omaava standardiliuos ja kaksi vesinäytettä, joihin osallistuva laboratorio teki toimitetut mineraaliöljylisäykset.

Synteettiselle näytteelle käytettiin vertailuarvona laskennallista öljypitoisuutta. Vesinäytteille vertailuarvona käytettiin robusti-keskiarvoa.

Tässä pätevyyskokeessa osallistujien tuloksista 88% oli tyydyttäviä, kun z-arvojen laskennassa käytettiin 20% 35 %:n tavoitekokonaiskeskihajontoja (95 % merkitsevyystasolla). Vesinäyttei- den analysoinnissa esiintyi joitakin eroja analyysimenetelmän eri vaiheissa (mm. uutto, puhdistus), joilla on ollut vaikutusta tuloksiin. Määritysmenetelmänsä akkreditoineiden laboratorioiden tuloksista 100% oli tyydyttäviä.

Pätevyyskoe mineraaliöljyn määrittämiseksi vesistä GC-menetelmää käyttäville laboratorioille järjestettiin toisen kerran Suomessa. Tulokset olivat parantuneet edellisestä pätevyyskokeesta, joka

ä 'estettiin vuonna 2002.

Asiasanat vesinäytteet, mineraaliöljyt, hiilivedyt, yrnpäristölaboratoriot, pätevyyskoe, vertailukoe Julkaisusarjan nimi Suomen ympäristökeskuksen moniste 326

ja numero Julkaisun teema Projektihankkeen nimi ja projektinumero Rahoittaja/

toimeksiantaja Projektiryhmään kuuluvat organisaatiot

ISSN ISBN

1455-0792 952-11-2020-7

Sivuja Kieli

31 englanti

Luottamuksellisuus Hinta

Julkinen

Julkaisun myynti/ Suomen ympäristökeskus, asiakaspalvelu jakaja sähköpostiosoite: neuvonta.syke@ymparisto.fi

puh. (09) 4030 0119, telefax (09) 4030 0190 Julkaisun kustantaja Suomen ympäristökeskus, PL 140, 00251 Helsinki Painopaikka ja -aika Helsinki 2005

Muut tiedot

Viittaukset

LIITTYVÄT TIEDOSTOT

Proftest SYKE carried out a similar interlaboratory comparison in 2016 where 70 % (based on z scores) of the results were satisfactory [7].... Statistical methods for use in

Proftest SYKE organized in 2017 the fifth virtual phytoplankton proficiency test based on filmed and preserved material. A total of 39 persons from 32 organizations and 11

The target total standard deviation (staC$et ), used for calculation of the z scores, was estimated on basis of the mineral oil content of the samples, the results of homogeneity

In this interlaboratory comparison, 80 % of the participating laboratories were able to report acceptable results, based on the target total standard deviation 20 - 40 % used

The target value for the standard deviation for proficiency assessment was estimated on the basis of the measurand concentration, the results of homogeneity and stability tests,

In the proficiency test PT 03/2010, where the same sediment sample was used, 87 % of nitric acid digested (SN6) results were satisfactory when deviation of 15–25 % from the

The target value for the standard deviation for proficiency assessment was estimated on the basis of the measurand concentration, the results of homogeneity and stability tests,

The performance of the participants was evaluated by using z scores In this proficiency test 90 % of the results were satisfactory when the target value for the total deviation from