• Ei tuloksia

Endpoint regularity of the dyadic and the fractional maximal function

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Endpoint regularity of the dyadic and the fractional maximal function"

Copied!
56
0
0

Kokoteksti

(1)

Endpoint regularity of the dyadic and the fractional maximal function

Julian Weigt

(2)

1/16

Background

Forf :Rd →Rthe uncentered Hardy-Littlewood maximal function is defined by

Mf(x) = sup

B3x

fB with fB = 1

L(B) ˆ

B

|f|.

The Hardy-Littlewood maximal function theorem:

kMfkLp(Rd)≤Cd,pkfkLp(Rd) if and only ifp >1 Juha Kinnunen (1997):

k∇MfkLp(Rd)≤Cd,pk∇fkLp(Rd) ifp >1

Question (Haj lasz and Onninen 2004) Is it true that

k∇MfkL1(Rd)≤Cdk∇fkL1(Rd)?

(3)

Background

Forf :Rd →Rthe uncentered Hardy-Littlewood maximal function is defined by

Mf(x) = sup

B3x

fB with fB = 1

L(B) ˆ

B

|f|.

The Hardy-Littlewood maximal function theorem:

kMfkLp(Rd)≤Cd,pkfkLp(Rd) if and only ifp >1 Juha Kinnunen (1997):

k∇MfkLp(Rd)≤Cd,pk∇fkLp(Rd) ifp >1

Question (Haj lasz and Onninen 2004) Is it true that

k∇MfkL1(Rd)≤Cdk∇fkL1(Rd)?

(4)

1/16

Background

Forf :Rd →Rthe uncentered Hardy-Littlewood maximal function is defined by

Mf(x) = sup

B3x

fB with fB = 1

L(B) ˆ

B

|f|.

The Hardy-Littlewood maximal function theorem:

kMfkLp(Rd)≤Cd,pkfkLp(Rd) if and only ifp >1 Juha Kinnunen (1997):

k∇MfkLp(Rd)≤Cd,pk∇fkLp(Rd) ifp >1

Question (Haj lasz and Onninen 2004) Is it true that

k∇MfkL1(Rd)≤Cdk∇fkL1(Rd)?

(5)

Progress on classical Hardy-Littlewood

d = 1 [Tanaka 2002, Aldaz+P´erez L´azaro 2007]

block decreasing f [Aldaz+P´erez L´azaro 2009]

centered M,d = 1 [Kurka 2015]

radial f [Luiro 2018]

characteristic f [W 2020]

(6)

3/16

The dyadic and the fractional maximal function

Forα∈(0,d) define the uncentered fractional Hardy-Littlewood maximal function by

Mαf(x) = sup

B3x

r(B)αfB, wherer(B) is the radius ofB.

The corresponding bound is k∇MαfkLd/(d−α)(Rd)≤Cd,αk∇fk1

The version withp >1 follows the same way as for α= 0 in Kinnunen (1997). The dyadic maximal function is

Mdf(x) = sup

Qdyadic cube,x∈Q

fQ The corresponding bound is

varMdf ≤Cdvarf.

(7)

The dyadic and the fractional maximal function

Forα∈(0,d) define the uncentered fractional Hardy-Littlewood maximal function by

Mαf(x) = sup

B3x

r(B)αfB,

wherer(B) is the radius ofB. The corresponding bound is k∇MαfkLd/(d−α)(Rd)≤Cd,αk∇fk1

The version withp >1 follows the same way as for α= 0 in Kinnunen (1997).

The dyadic maximal function is Mdf(x) = sup

Qdyadic cube,x∈Q

fQ The corresponding bound is

varMdf ≤Cdvarf.

(8)

3/16

The dyadic and the fractional maximal function

Forα∈(0,d) define the uncentered fractional Hardy-Littlewood maximal function by

Mαf(x) = sup

B3x

r(B)αfB,

wherer(B) is the radius ofB. The corresponding bound is k∇MαfkLd/(d−α)(Rd)≤Cd,αk∇fk1

The version withp >1 follows the same way as for α= 0 in Kinnunen (1997). The dyadic maximal function is

Mdf(x) = sup

Qdyadic cube,x∈Q

fQ

The corresponding bound is

varMdf ≤Cdvarf.

(9)

The dyadic and the fractional maximal function

Forα∈(0,d) define the uncentered fractional Hardy-Littlewood maximal function by

Mαf(x) = sup

B3x

r(B)αfB,

wherer(B) is the radius ofB. The corresponding bound is k∇MαfkLd/(d−α)(Rd)≤Cd,αk∇fk1

The version withp >1 follows the same way as for α= 0 in Kinnunen (1997). The dyadic maximal function is

Mdf(x) = sup

Qdyadic cube,x∈Q

fQ The corresponding bound is

(10)

4/16

Progress on related operators

convolution, d = 1 [Carneiro+Svaiter 2013]

uncentered fractional, α >1 [Kinnunen+Saksman 2003, Carneiro+Madrid 2017]

fractional smooth convolution [Beltran+Ramos+Saari 2018]

fractional lacunary [Beltran+Ramos+Saari 2018]

convolution, radial f [Carneiro+Svaiter 2019]

fractional, radialf [Beltran+Madrid 2019]

dyadic [W 2020]

fractional [W 2020]

related: Continuity off 7→ ∇Mf as W1,1(Rd)→L1(Rd) (does not follow from boundedness), boundedness on other spaces, local maximal operator.

(11)

Progress on related operators

convolution, d = 1 [Carneiro+Svaiter 2013]

uncentered fractional, α >1 [Kinnunen+Saksman 2003, Carneiro+Madrid 2017]

fractional smooth convolution [Beltran+Ramos+Saari 2018]

fractional lacunary [Beltran+Ramos+Saari 2018]

convolution, radial f [Carneiro+Svaiter 2019]

fractional, radialf [Beltran+Madrid 2019]

dyadic [W 2020]

fractional [W 2020]

related: Continuity off 7→ ∇Mf as W1,1(Rd)→L1(Rd) (does not follow from boundedness), boundedness on other spaces, local maximal operator.

(12)

4/16

Progress on related operators

convolution, d = 1 [Carneiro+Svaiter 2013]

uncentered fractional, α >1 [Kinnunen+Saksman 2003, Carneiro+Madrid 2017]

fractional smooth convolution [Beltran+Ramos+Saari 2018]

fractional lacunary [Beltran+Ramos+Saari 2018]

convolution, radial f [Carneiro+Svaiter 2019]

fractional, radialf [Beltran+Madrid 2019]

dyadic [W 2020]

fractional [W 2020]

related: Continuity off 7→ ∇Mf as W1,1(Rd)→L1(Rd) (does not follow from boundedness), boundedness on other spaces, local maximal operator.

(13)

1. The Dyadic Maximal Operator

By the coarea formula

and{f > λ} ⊂ {Mdf > λ} up to measure zero

varMdf = ˆ

R

Hd−1(∂{Mdf > λ})dλ

≤ ˆ

R

Hd−1(∂{Mdf > λ} \ {f > λ}) +Hd−1(∂{f > λ})dλ

Since ˆ

R

Hd−1(∂{f > λ})dλ= varf it suffices to bound the first summand.

(14)

5/16

1. The Dyadic Maximal Operator

By the coarea formula and{f > λ} ⊂ {Mdf > λ} up to measure zero

varMdf = ˆ

R

Hd−1(∂{Mdf > λ})dλ

≤ ˆ

R

Hd−1(∂{Mdf > λ} \ {f > λ}) +Hd−1(∂{f > λ})dλ

Since ˆ

R

Hd−1(∂{f > λ})dλ= varf it suffices to bound the first summand.

(15)

1. The Dyadic Maximal Operator

By the coarea formula and{f > λ} ⊂ {Mdf > λ} up to measure zero

varMdf = ˆ

R

Hd−1(∂{Mdf > λ})dλ

≤ ˆ

R

Hd−1(∂{Mdf > λ} \ {f > λ}) +Hd−1(∂{f > λ})dλ

Since ˆ

R

Hd−1(∂{f > λ})dλ= varf it suffices to bound the first summand.

(16)

6/16

Definition

Q is maximal forλ <fQ if for allP )Q we havefP ≤λ.

GivenQ, let λQ be the smallest suchλ. ˆ

R

Hd−1(∂{Mdf > λ} \ {f > λ})dλ

= ˆ

R

Hd−1(∂[

{maximal Q :fQ > λ} \ {f > λ})dλ

≤ ˆ

R

X

maximalQ:fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

QQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

QQ<λ<λ˜Q

+ X

Q:˜λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

where ”L(Q∩ {f >˜λQ}) = 2−d−2L(Q)”.

(17)

Definition

Q is maximal forλ <fQ if for allP )Q we havefP ≤λ.

GivenQ, let λQ be the smallest suchλ.

ˆ

R

Hd−1(∂{Mdf > λ} \ {f > λ})dλ

= ˆ

R

Hd−1(∂[

{maximal Q :fQ > λ} \ {f > λ})dλ

≤ ˆ

R

X

maximalQ:fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

QQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

QQ<λ<λ˜Q

+ X

Q:˜λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

where ”L(Q∩ {f >˜λQ}) = 2−d−2L(Q)”.

(18)

6/16

Definition

Q is maximal forλ <fQ if for allP )Q we havefP ≤λ.

GivenQ, let λQ be the smallest suchλ.

ˆ

R

Hd−1(∂{Mdf > λ} \ {f > λ})dλ

= ˆ

R

Hd−1(∂[

{maximal Q :fQ > λ} \ {f > λ})dλ

≤ ˆ

R

X

maximalQ:fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

QQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

QQ<λ<λ˜Q

+ X

Q:˜λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

where ”L(Q∩ {f >˜λQ}) = 2−d−2L(Q)”.

(19)

Definition

Q is maximal forλ <fQ if for allP )Q we havefP ≤λ.

GivenQ, let λQ be the smallest suchλ.

ˆ

R

Hd−1(∂{Mdf > λ} \ {f > λ})dλ

= ˆ

R

Hd−1(∂[

{maximal Q :fQ > λ} \ {f > λ})dλ

≤ ˆ

R

X

maximalQ:fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

QQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

QQ<λ<λ˜Q

+ X

Q:˜λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

where ”L(Q∩ {f >˜λQ}) = 2−d−2L(Q)”.

(20)

6/16

Definition

Q is maximal forλ <fQ if for allP )Q we havefP ≤λ.

GivenQ, let λQ be the smallest suchλ.

ˆ

R

Hd−1(∂{Mdf > λ} \ {f > λ})dλ

= ˆ

R

Hd−1(∂[

{maximal Q :fQ > λ} \ {f > λ})dλ

≤ ˆ

R

X

maximalQ:fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

Q:λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

QQ<λ<λ˜Q

+ X

Q:˜λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

where ”L(Q∩ {f >˜λQ}) = 2−d−2L(Q)”.

(21)

Definition

Q is maximal forλ <fQ if for allP )Q we havefP ≤λ.

GivenQ, let λQ be the smallest suchλ.

ˆ

R

Hd−1(∂{Mdf > λ} \ {f > λ})dλ

= ˆ

R

Hd−1(∂[

{maximal Q :fQ > λ} \ {f > λ})dλ

≤ ˆ

R

X

maximalQ:fQ

Hd−1(∂Q\ {f > λ})dλ

= ˆ

R

X

Q:λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

=

ˆ X

+ X

Hd−1(∂Q\ {f > λ})dλ

(22)

7/16

High density case

Proposition (High density) ForL(Q∩E)≥εL(Q) we have

Hd−1(∂Q\E).εHd−1(Q∩∂E).

ˆ

R

X

Q:λQ<λ<˜λQ

Hd−1(∂Q\ {f > λ})dλ

. ˆ

R

X

Q:λQ<λ<˜λQ

Hd−1(Q∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ

= varf

(23)

High density case

Proposition (High density) ForL(Q∩E)≥εL(Q) we have

Hd−1(∂Q\E).εHd−1(Q∩∂E).

ˆ

R

X

Q:λQ<λ<˜λQ

Hd−1(∂Q\ {f > λ})dλ

. ˆ

R

X

Q:λQ<λ<˜λQ

Hd−1(Q∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ

= varf

(24)

7/16

High density case

Proposition (High density) ForL(Q∩E)≥εL(Q) we have

Hd−1(∂Q\E).εHd−1(Q∩∂E).

ˆ

R

X

Q:λQ<λ<˜λQ

Hd−1(∂Q\ {f > λ})dλ

. ˆ

R

X

Q:λQ<λ<˜λQ

Hd−1(Q∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ

= varf

(25)

High density case

Proposition (High density) ForL(Q∩E)≥εL(Q) we have

Hd−1(∂Q\E).εHd−1(Q∩∂E).

ˆ

R

X

Q:λQ<λ<˜λQ

Hd−1(∂Q\ {f > λ})dλ

. ˆ

R

X

Q:λQ<λ<˜λQ

Hd−1(Q∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ

(26)

E

Q

L(Q∩E)≥εL(Q)

=⇒ Hd−1(∂Q\E).εHd−1(Q∩∂E)

(27)

Low density case

Estimate ˆ

R

X

Q:˜λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

≤ ˆ

R

X

QλQ<λ<fQ

Hd−1(∂Q)dλ

=X

Q

(fQ−˜λQ)Hd−1(∂Q)

We have to estimate this by varf.

(28)

9/16

Low density case

Estimate ˆ

R

X

Q:˜λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

≤ ˆ

R

X

QλQ<λ<fQ

Hd−1(∂Q)dλ

=X

Q

(fQ−˜λQ)Hd−1(∂Q)

We have to estimate this by varf.

(29)

Low density case

Estimate ˆ

R

X

Q:˜λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

≤ ˆ

R

X

QλQ<λ<fQ

Hd−1(∂Q)dλ

=X

Q

(fQ−˜λQ)Hd−1(∂Q)

We have to estimate this by varf.

(30)

9/16

Low density case

Estimate ˆ

R

X

Q:˜λQ<λ<fQ

Hd−1(∂Q\ {f > λ})dλ

≤ ˆ

R

X

QλQ<λ<fQ

Hd−1(∂Q)dλ

=X

Q

(fQ−˜λQ)Hd−1(∂Q)

We have to estimate this by varf.

(31)

Relative isoperimetric inequality

ForL(Q∩E)≤ L(Q)/2 the relative isoperimetric inequality states L(Q∩E)d−1d .Hd−1(Q∩∂E)

Proposition

(fQ −λ˜Q)L(Q). ˆ

R

X

P(Q:¯λP<λ<fP

L(P ∩ {f > λ})dλ

whereP is maximal above ¯λP and

”L(P ∩ {f >¯λP}) = 2−1L(P)”

”L(Q∩ {f >˜λQ}) = 2−d−2L(Q)”

(32)

10/16

Relative isoperimetric inequality

ForL(Q∩E)≤ L(Q)/2 the relative isoperimetric inequality states L(Q∩E)d−1d .Hd−1(Q∩∂E)

Proposition

(fQ −λ˜Q)L(Q). ˆ

R

X

P(Q:¯λP<λ<fP

L(P ∩ {f > λ})dλ

whereP is maximal above ¯λP and

”L(P ∩ {f >¯λP}) = 2−1L(P)”

”L(Q∩ {f >λ˜Q}) = 2−d−2L(Q)”

(33)

fQ

fP1

fP2

P3

fP3

(34)

12/16

X

Q

(fQ−˜λQ)Hd−1(∂Q)

. ˆ

R

X

Q

l(Q)−1 X

P(Q:¯λP<λ<fP

L(P∩ {f > λ})dλ

= ˆ

R

X

P:¯λP<λ<fP

L(P∩ {f > λ})X

Q)P

l(Q)−1

= ˆ

R

X

P:¯λP<λ<fP

L(P∩ {f > λ}) l(P)−1

≤ ˆ

R

X

P:¯λP<λ<fP

L(P∩ {f > λ})d−1d

. ˆ

R

X

P:¯λP<λ<fP

Hd−1(P∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ= varf

(35)

X

Q

(fQ−˜λQ)Hd−1(∂Q)

. ˆ

R

X

Q

l(Q)−1 X

P(Q:¯λP<λ<fP

L(P∩ {f > λ})dλ

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})X

Q)P

l(Q)−1

= ˆ

R

X

P:¯λP<λ<fP

L(P∩ {f > λ}) l(P)−1

≤ ˆ

R

X

P:¯λP<λ<fP

L(P∩ {f > λ})d−1d

. ˆ

R

X

P:¯λP<λ<fP

Hd−1(P∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ= varf

(36)

12/16

X

Q

(fQ−˜λQ)Hd−1(∂Q)

. ˆ

R

X

Q

l(Q)−1 X

P(Q:¯λP<λ<fP

L(P∩ {f > λ})dλ

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})X

Q)P

l(Q)−1

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ}) l(P)−1

≤ ˆ

R

X

P:¯λP<λ<fP

L(P∩ {f > λ})d−1d

. ˆ

R

X

P:¯λP<λ<fP

Hd−1(P∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ= varf

(37)

X

Q

(fQ−˜λQ)Hd−1(∂Q)

. ˆ

R

X

Q

l(Q)−1 X

P(Q:¯λP<λ<fP

L(P∩ {f > λ})dλ

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})X

Q)P

l(Q)−1

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ}) l(P)−1

≤ ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})d−1d

. ˆ

R

X

P:¯λP<λ<fP

Hd−1(P∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ= varf

(38)

12/16

X

Q

(fQ−˜λQ)Hd−1(∂Q)

. ˆ

R

X

Q

l(Q)−1 X

P(Q:¯λP<λ<fP

L(P∩ {f > λ})dλ

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})X

Q)P

l(Q)−1

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ}) l(P)−1

≤ ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})d−1d

. ˆ

R

X

P:¯λP<λ<fP

Hd−1(P∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ= varf

(39)

X

Q

(fQ−˜λQ)Hd−1(∂Q)

. ˆ

R

X

Q

l(Q)−1 X

P(Q:¯λP<λ<fP

L(P∩ {f > λ})dλ

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})X

Q)P

l(Q)−1

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ}) l(P)−1

≤ ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})d−1d

. ˆ

R

X

P:¯λP<λ<fP

Hd−1(P∩∂{f > λ})dλ ˆ

(40)

12/16

X

Q

(fQ−˜λQ)Hd−1(∂Q)

. ˆ

R

X

Q

l(Q)−1 X

P(Q:¯λP<λ<fP

L(P∩ {f > λ})dλ

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})X

Q)P

l(Q)−1

= ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ}) l(P)−1

≤ ˆ

R

X

P:¯λP<λ<fP

L(P ∩ {f > λ})d−1d

. ˆ

R

X

P:¯λP<λ<fP

Hd−1(P∩∂{f > λ})dλ

≤ ˆ

R

Hd−1(∂{f > λ})dλ= varf

(41)

2. The fractional maximal operator

Recall 0< α <d and

Mαf(x) = sup

B3x

r(B)αfB.

Then for almost everyx ∈Rd the supremum is attained in some ballB with x∈B. Denote byBα the set of all optimal balls forf. Want to show

k∇Mαfkd/(d−α)≤Cd,αk∇fk1.

Kinnunen and Saksman (2003) For an optimal ballB for x we have

|∇Mαf(x)| ≤(d −α)r(B)α−1fB. Conclude

|∇Mαf(x)|. sup

B∈Bα,x∈B

r(B)α−1fB =:Mα,−1f(x).

(42)

13/16

2. The fractional maximal operator

Recall 0< α <d and

Mαf(x) = sup

B3x

r(B)αfB.

Then for almost everyx ∈Rd the supremum is attained in some ballB with x∈B. Denote byBα the set of all optimal balls forf.

Want to show

k∇Mαfkd/(d−α)≤Cd,αk∇fk1.

Kinnunen and Saksman (2003) For an optimal ballB for x we have

|∇Mαf(x)| ≤(d −α)r(B)α−1fB. Conclude

|∇Mαf(x)|. sup

B∈Bα,x∈B

r(B)α−1fB =:Mα,−1f(x).

(43)

2. The fractional maximal operator

Recall 0< α <d and

Mαf(x) = sup

B3x

r(B)αfB.

Then for almost everyx ∈Rd the supremum is attained in some ballB with x∈B. Denote byBα the set of all optimal balls forf. Want to show

k∇Mαfkd/(d−α)≤Cd,αk∇fk1.

Kinnunen and Saksman (2003) For an optimal ballB for x we have

|∇Mαf(x)| ≤(d −α)r(B)α−1fB. Conclude

|∇Mαf(x)|. sup

B∈Bα,x∈B

r(B)α−1fB =:Mα,−1f(x).

(44)

13/16

2. The fractional maximal operator

Recall 0< α <d and

Mαf(x) = sup

B3x

r(B)αfB.

Then for almost everyx ∈Rd the supremum is attained in some ballB with x∈B. Denote byBα the set of all optimal balls forf. Want to show

k∇Mαfkd/(d−α)≤Cd,αk∇fk1.

Kinnunen and Saksman (2003) For an optimal ballB for x we have

|∇Mαf(x)| ≤(d−α)r(B)α−1fB.

Conclude

|∇Mαf(x)|. sup

B∈Bα,x∈B

r(B)α−1fB =:Mα,−1f(x).

(45)

2. The fractional maximal operator

Recall 0< α <d and

Mαf(x) = sup

B3x

r(B)αfB.

Then for almost everyx ∈Rd the supremum is attained in some ballB with x∈B. Denote byBα the set of all optimal balls forf. Want to show

k∇Mαfkd/(d−α)≤Cd,αk∇fk1.

Kinnunen and Saksman (2003) For an optimal ballB for x we have

|∇Mαf(x)| ≤(d−α)r(B)α−1fB. Conclude

(46)

14/16

1. Make disjoint ˆ

(Mα,−1f)d−αd = ˆ

sup

B∈Bα

(r(B)α−1fB)d−αd 1B

.α,c1,c2

ˆ X

B∈Beα

(r(B)α−1fB)d−αd 1B

α X

BBeα

(fBHd−1(∂B))d−αd

whereBeα⊂ Bα such that for two ballsB,C ∈Bewe have c1B∩c1C =∅, or r(C)<r(B) andfC >c2fB.

Ifα−1≥0: Vitali covering argument suffices. Ifα−1<0: Use that ifB,C ∈ Bα with C ⊂B and

r(C)<r(B)/N we haver(C)αfC >r(B)αfB and thus fC >NαfB.

(47)

1. Make disjoint ˆ

(Mα,−1f)d−αd = ˆ

sup

B∈Bα

(r(B)α−1fB)d−αd 1B .α,c1,c2

ˆ X

B∈Beα

(r(B)α−1fB)d−αd 1B

α X

BBeα

(fBHd−1(∂B))d−αd

whereBeα⊂ Bα such that for two ballsB,C ∈Bewe have c1B∩c1C =∅, or r(C)<r(B) andfC >c2fB.

Ifα−1≥0: Vitali covering argument suffices. Ifα−1<0: Use that ifB,C ∈ Bα with C ⊂B and

r(C)<r(B)/N we haver(C)αfC >r(B)αfB and thus fC >NαfB.

(48)

14/16

1. Make disjoint ˆ

(Mα,−1f)d−αd = ˆ

sup

B∈Bα

(r(B)α−1fB)d−αd 1B .α,c1,c2

ˆ X

B∈Beα

(r(B)α−1fB)d−αd 1B

α X

BBeα

(fBHd−1(∂B))d−αd

whereBeα⊂ Bα such that for two ballsB,C ∈Bewe have c1B∩c1C =∅, or r(C)<r(B) andfC >c2fB.

Ifα−1≥0: Vitali covering argument suffices.

Ifα−1<0: Use that ifB,C ∈ Bα with C ⊂B and

r(C)<r(B)/N we haver(C)αfC >r(B)αfB and thus fC >NαfB.

(49)

1. Make disjoint ˆ

(Mα,−1f)d−αd = ˆ

sup

B∈Bα

(r(B)α−1fB)d−αd 1B .α,c1,c2

ˆ X

B∈Beα

(r(B)α−1fB)d−αd 1B

α X

BBeα

(fBHd−1(∂B))d−αd

whereBeα⊂ Bα such that for two ballsB,C ∈Bewe have c1B∩c1C =∅, or r(C)<r(B) andfC >c2fB.

Ifα−1≥0: Vitali covering argument suffices.

Ifα−1<0: Use that ifB,C ∈ Bα with C ⊂B and

(50)

14/16

1. Make disjoint ˆ

(Mα,−1f)d−αd = ˆ

sup

B∈Bα

(r(B)α−1fB)d−αd 1B .α,c1,c2

ˆ X

B∈Beα

(r(B)α−1fB)d−αd 1B

α X

BBeα

(fBHd−1(∂B))d−αd

whereBeα⊂ Bα such that for two ballsB,C ∈Bewe have c1B∩c1C =∅, or r(C)<r(B) andfC >c2fB.

Ifα−1≥0: Vitali covering argument suffices.

Ifα−1<0: Use that ifB,C ∈ Bα with C ⊂B and

r(C)<r(B)/N we haver(C)αfC >r(B)αfB and thus fC >NαfB.

(51)

2. Reduce to dyadic

X

B∈Beα

(fBHd−1(∂B))d−αd

X

B∈B˜α

fBHd−1(∂B) d−αd

.α

X

Q∈Q˜α

fQHd−1(∂Q) d−αd

≤Cd,α(varf)d−αd

where l(Q)∼αr(B) and fQα fB so that alsocαQ∩cαP =∅, or l(P)<l(Q) andfP >2fQ.

(52)

15/16

2. Reduce to dyadic

X

B∈Beα

(fBHd−1(∂B))d−αd

X

B∈B˜α

fBHd−1(∂B) d−αd

.α

X

Q∈Q˜α

fQHd−1(∂Q) d−αd

≤Cd,α(varf)d−αd

where l(Q)∼αr(B) and fQα fB so that alsocαQ∩cαP =∅, or l(P)<l(Q) andfP >2fQ.

(53)

2. Reduce to dyadic

X

B∈Beα

(fBHd−1(∂B))d−αd

X

B∈B˜α

fBHd−1(∂B) d−αd

.α

X

QQ˜α

fQHd−1(∂Q) d−αd

≤Cd,α(varf)d−αd

where l(Q)∼αr(B) and fQα fB so that alsocαQ∩cαP =∅, or l(P)<l(Q) andfP >2fQ.

(54)

15/16

2. Reduce to dyadic

X

B∈Beα

(fBHd−1(∂B))d−αd

X

B∈B˜α

fBHd−1(∂B) d−αd

.α

X

QQ˜α

fQHd−1(∂Q) d−αd

≤Cd,α(varf)d−αd

where l(Q)∼αr(B) and fQα fB so that alsocαQ∩cαP =∅, or l(P)<l(Q) andfP >2fQ.

(55)

2. Reduce to dyadic

X

B∈Beα

(fBHd−1(∂B))d−αd

X

B∈B˜α

fBHd−1(∂B) d−αd

.α

X

QQ˜α

fQHd−1(∂Q) d−αd

≤Cd,α(varf)d−αd

where l(Q)∼αr(B) and fQα fB so that alsocαQ∩cαP =∅, or l(P)<l(Q) andfP >2fQ.

(56)

16/16

Thank you

Viittaukset

LIITTYVÄT TIEDOSTOT

Mil- itary technology that is contactless for the user – not for the adversary – can jeopardize the Powell Doctrine’s clear and present threat principle because it eases

Indeed, while strongly criticized by human rights organizations, the refugee deal with Turkey is seen by member states as one of the EU’s main foreign poli- cy achievements of

However, the pros- pect of endless violence and civilian sufering with an inept and corrupt Kabul government prolonging the futile fight with external support could have been

More generally, the use of John–Nirenberg theorem can be replaced by the Franchi–P´ erez–Wheeden lemma in the context of functions satisfying a generalized Poincar´ e inequality.

In order to have a maximal function which preserves, for example, the Sobolev spaces on metric measure spaces, we construct a maximal function based on a discrete convolution.. Let

The ingre- dients used are a pointwise estimate for the gradient of the fractional maximal function, the layer cake formula, a Vitali type argument, a reduction from balls to

Also related topics for various exponents 1 ≤ p ≤ ∞ have been studied, such as the continuity of the maximal operator in Sobolev spaces [5] and bounds for the gradient of other

Regularity of the local Hardy–Littlewood maximal function of a Sobolev function on an open Ω ⊂ R n was first studied by Kinnunen and Lindqvist [14], and a local variant of