• Ei tuloksia

Approximate local output regulation for a class of nonlinear fluid flows

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Approximate local output regulation for a class of nonlinear fluid flows"

Copied!
7
0
0

Kokoteksti

(1)

ContentslistsavailableatScienceDirect

European Journal of Control

journalhomepage:www.elsevier.com/locate/ejcon

Approximate local output regulation for a class of nonlinear fluid flows R

Konsta Huhtala

, Lassi Paunonen

Faculty of Information Technology and Communication Sciences, Mathematics and Statistics, Tampere University, PO. Box 692, Tampere 33101, Finland

a rt i c l e i nf o

Article history:

Received 16 April 2021 Revised 19 June 2021 Accepted 25 June 2021 Available online 2 July 2021 Recommended by Prof. T Parisini Keywords:

Distributed parameter systems Nonlinear systems

Output regulation Fluid flow systems

a b s t r a c t

We consider output tracking foraclassof viscous nonlinearfluidflows includingthe incompressible 2DNavier–Stokesequations.Thefluidissubjecttoin-domaininputsanddisturbances.Weconstructan errorfeedbackcontrollerwhichguaranteesapproximatelocalvelocityoutputtrackingforaclassofrefer- enceoutputs.Thecontrolsolutioncoverspointvelocityobservationsandassumesasmoothenoughstate space.Efficacyofthecontrolsolutionisillustratedthroughanumericalexample.

© 2021TheAuthor(s).PublishedbyElsevierLtdonbehalfofEuropeanControlAssociation.

ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

In thiswork, weconsider an output trackingproblemforvis- cousnonlinearfluidflowsintheneighborhoodofa(locally)expo- nentiallystablesteadystatesolution.Weformulateourresultsfor theincompressibleNavier–Stokesequationsonasufficientlyregu- lardomain⊂R2 withboundary.Moreprecisely,weconsider controllinganoutputyoftheequations

w

t =

ν

w

(

w·

)

w

q+fw+fu+fd, (1a)

0=

·w, w

|

=0, (1b)

where w(

ξ

,t)is thefluid velocity, q(

ξ

,t)is thefluid pressure,

ν

is the kinematic viscosity, fw(

ξ

) is a body force, fu(

ξ

,t) is the control action and fd(

ξ

,t) is the disturbance action. Our goal is to design a controller such that a chosen velocity output of (1) converges to a desired reference output approximately for initial states which are, in a certain sense, “close enough” to a steadystatesolutionof(1).

R The research was supported by the Academy of Finland Grant number 310489 held by L. Paunonen.

Corresponding author.

E-mail addresses: konsta.huhtala@tuni.fi(K. Huhtala), lassi.paunonen@tuni.fi(L.

Paunonen).

Theoryof output regulationfor nonlinear systems is still un- der development, especially forinfinite-dimensionalsystems.The finite-dimensionalresultsof[11]havebeenextendedtoaclassof infinite-dimensionalsystems in[5]and forco-locatedinputsand outputsin[6],basedonwhichseveralexamplecasesarepresented in[1].Inthiswork,we focusonoutputregulationinanapproxi- matesenseutilizingtheresultsof[13].In[13],theauthorsusean errorfeedback controller designed forrobust output regulation of exponentiallystableregularlinear systemsandshowthat thesame controllerachievesapproximatelocaloutputregulationforaclassof nonlinearsystemswhichthey callregularnonlinearsystems.Simi- larapproachofusinglinearcontrolsolutionsfornonlinearsystems hasbeenutilizedforlocalstabilizationofnonlinearfluid flowsin differentsetups,seee.g. [3]forin-domaininputs,[14]forbound- aryinputsand[10]forobserverdesign.

As the main contribution of this paper, we show that the Eq. (1) can be formulated as a regular nonlinear system(in the sense of[13]) forawide rangeofvelocity observationsincluding thepointobservation.Toachieve this,we considertheEq.(1)on a “lifted” statespace, i.e.wedemand moresmoothness fromthe velocityandthepressurethan wouldtypically berequiredtoe.g.

solve similar control problems for linear systems. To formulate (1)as a regularnonlinear system,we rely onthe fluid being vis- cous and assume that the domain together with the bound- ary conditions are such that the system can be formulated on the “lifted” state space.These properties,together withthe type (x·

)xofthenonlinearitytypicalforfluidflows,characterizethe fluidflowsforwhichtheresultscanbeapplied.

https://doi.org/10.1016/j.ejcon.2021.06.025

0947-3580/© 2021 The Author(s). Published by Elsevier Ltd on behalf of European Control Association. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

(2)

Usingtheresultsof[13],weshowthatintheneighborhoodof asteadystatesolution,velocity observationson(1)approximately converge toany desired“small enough” periodic referencesignal ofthetype

yr

(

t

)

=a0+

qs

i=1

aicos

( ω

it

)

+bisin

( ω

it

)

inthesense thatforsmallenoughinitialdata,afinitenumberof chosen harmonicsof the systemoutput andthe referenceoutput are thesame.Here thecoefficient vectorsai,bi∈Rpy maybe un- known butwe expect toknowthe frequencies

ω

i. Thecontroller introducedin[13]alsorejectsperiodicin-domaindisturbancesig- nalsofthetype

ud

(

t

)

=c0+

qs

i=1

cicos

( ω

it

)

+disin

( ω

it

)

withsmallenough amplitude, whereagainci,di∈Rd are allowed to be unknown.Note thatseveralcontrollers havebeen designed for robust outputtracking ofsimilar signal classesin the caseof linearsystems,seee.g.[15,16].

Rest ofthepaperis organizedasfollows.InSection 2,we re- calltheconceptsofregularnonlinearsystemsandapproximatelo- caloutputregulation.InSection3,weshowthattheNavier–Stokes equationswithin-domaincontrolandpointobservationfitintothe framework ofregularnonlinearsystemsona suitablestate space.

InSection 4,weconstruct,basedon[13],a controllerforapprox- imate localoutputregulationfortheNavier–Stokesequationsand then illustrate the controller’s performance through a simulation exampleinSection5.Finally,thepaperisconcludedinSection6.

ThroughoutthepaperwedenotebyL(X,Y)thesetofbounded linear operators froma Hilbertspace X to a HilbertspaceY. For a linear operator A:D(A)X, D(A) is the domain ofA,

ρ

(A) is the resolvent set of A and TA is the strongly continuous semi- group generated by A on X. For a fixed s

ρ

(A), we denote by X1 thecompletionofX withrespecttothenorm

x

X−1=

(sIA)−1x

X and define X1=D(A), equipped with the norm

x

X1=

(sIA)x

X.Finally,theL2-innerproductoveradomainisde- notedby

(·),(·)L2().

2. Regularnonlinearsystemsandoutputregulation

Output regulationforfluid flowsystems coveredby thiswork isbasedontheconceptsofregularnonlinearsystemsandapproxi- matelocaloutputregulation,whichwereintroducedin[13].These conceptsarepresentednext,withthedefinitionofregularnonlin- earsystemsformulatedinaslightlyrestrictedsettingbyexcluding partsthatarenotrelevanttothiswork.

Definition 1. Let X, U, Y and V be Hilbert spaces, and let C defined by Cx=lims+Cs(sIA)1x with D(C)=

{

xX

|

theabovelimitexists

}

be the -extension of the observation operatorC,see[21].Thesystem

x˙

(

t

)

=Ax

(

t

)

+Bu

(

t

)

+Bdud

(

t

)

+QF

(

x

(

t

))

, x

(

0

)

=x0X,

y

(

t

)

=Cx

(

t

)

,

whichwedenotebyF,iscalledaregularnonlinearsystemifthe followinghold.

(i) The operator A generates an exponentially stable strongly continuoussemigroupTA onX.

(ii) It holds that BL(U,X1), BdL(Ud,X1), QL(V,X1) and CL(X1,Y), and the triples (A,B,C), (A,Bd,C) and (A,Q,C)areregularlinearsystemsinthesenseof[21].

(iii) The nonlinear map F:XV satisfies F(0)=0 andis lo- cally Lipschitz. Thatis, forevery bounded set OX, there existsaconstantLOsuchthatforallx1,x2O

F

(

x1

)

F

(

x2

)

V LO

x1x2

X.

Furthermore,foreach

γ

>0thereexistsa

ζ

>0suchthatif sup

x

X

xO

<

ζ

,thenLO<

γ

.

Togeneratetheplantinput,weuseanerrorfeedbackcontroller oftheform

˙

z

(

t

)

=G1z

(

t

)

+G2e

(

t

)

, z

(

0

)

=z0Z, (3a)

u

(

t

)

=Kz

(

t

)

, (3b)

wheree(t)=y(t)yr(t)istheregulationerrorandZisaHilbert space. Coupling the controller with a regular nonlinear system yieldstheclosed-loopsystemEdefinedby

˙

xe

(

t

)

=Aexe+Bewext

(

t

)

+QeF

(

x

(

t

))

, xe0Xe, e

(

t

)

=Cexe

(

t

)

+Deyr

(

t

)

on the Hilbert space Xe=X×Z, where xe=[x, z]T, wext= [ud, yr]T,

Ae=

A BK G2C G1

, Be=

Bd 0 0 −G2

, Qe=

Q 0

, Ce=

C 0 , De=

0 −I .

Before introducing theoutput tracking problem, we recall the concept ofharmonics ofa function. Consider a function f= fp+ fe,wherefpL2loc([0,);Cn)isT-periodicand feL2([0,);Cn). Foranon-negativeintegerl,thelthharmonicof f isthefunction

fl

(

t

)

=

α

lsin

2

π

lt

T

+

β

lcos

2

π

lt

T

, t≥0,

where

α

l= lim

kN,k→∞

2 kT

kT 0

f

(

t

)

sin

2

π

lt

T

dt,

β

l= lim

kN,k→∞

2 kT

kT 0

f

(

t

)

cos

2

π

lt

T

dt,

thusforfrequencies ofthe harmonics,we have

ω

i=2

π

li/T. Now the problem of achieving approximate local output regulation is statedasfollows.

Problem 2. Let T>0 be a constant. Assume that yr and ud are T-periodic functions and let V=

{

l0,l1,...,lnv

}

be a finite set of

non-negativeintegers.Designanerrorfeedbackcontroller(3)such that:

1. Theclosed-loopsystemEisaregularnonlinearsystem.

2. There exist positive constants cy, cd and ce such that if

yr

L2[0,T]cy,

ud

Lcdand

xe0

Xece,thenxeconverges asymptoticallytoaT-periodicfunctionandthelthharmonicof yyris0foreachl∈V.Theoutputsatisfiesy=yp+ye,where yeL2([0,);Y) andypL2loc([0,);Y)is a T-periodicfunc- tion.

Accuracy of output tracking by solving the above problem clearlydependsonhowdominanttheharmonicsincludedinVare.

In manycases,ensuring that the first few harmonics ofy match thoseofyr resultsinasmalltrackingerror,sincehigherharmon- icsoftheoutputaretypicallysmall.

(3)

3. TheincompressibleNavier–Stokesequationsasanabstract controlsystem

The goal of this section is to formulate the Navier–Stokes Eq.(1) asaregular nonlinear system. Westart by findinga suit- able state space forthe formulation andthen verify that there- quirementsofDefinition1arefulfilled.

3.1. Choosingthestatespace

Translating the Eq.(1) to the vicinity of a steady state solu- tion(

v

e,pe)usingthechangeofvariables

v

(

ξ

,t)=w(

ξ

,t)

v

e(

ξ

), p(

ξ

,t)=q(

ξ

,t)pe(

ξ

)yields

v

t =

ν v

( v

e·

) v

( v

·

) v

e (4a)

( v

·

) v

p+fu+fd, (4b)

0=

·

v

,

v |

=0 (4c)

withthe initialstate

v

(

ξ

,0)=

v

0(

ξ

).We assumethat thecontrol andthedisturbancearedefinedby

fu

( ξ

,t

)

=

g1

( ξ )

g2

( ξ )

· · · gm

( ξ )

u

(

t

)

, (5a)

fd

( ξ

,t

)

=

g1

( ξ )

g2

( ξ )

· · · gd

( ξ )

ud

(

t

)

, (5b)

where each g1,...,gm and g1,...,gd is an R2-valued function on , u(t)U:=Cm is the finite-dimensional control input and ud(t)Ud:=Cd is the finite-dimensional disturbance input. Ad- ditionally, we assume that the output space Y is also finite- dimensionalandY=Cpy withpym.

Forsimplernotation,wedefinethespaces X˜=

v

(

L2

())

2

·

v

=0,

( v

·n

) |

=0

, H˜ =

v

(

H1

())

2

·

v

=0,

v |

=0

andthebilinearandtrilinearforms

a

( v

,

ψ )

=2

ν ( v )

,

( ψ )

L2()

v

,

ψ

H˜,

b

( v

,

φ

,

ψ )

=

( v

·

) φ

,

ψ

L2()

v

,

φ

,

ψ

H˜,

where

(

v

)=1/2(

v

+(

v

)T).

Assumption3. Weassumethefollowing:

(i) TheboundaryisofclassC3and fw(H1())2. (ii) Thelinearizationof(4)isexponentiallystable.

The first part ofthe assumption guarantees sufficient regular- ityofthesolutionsoftheNavier–StokesEq.(1),whilethesecond partisrequiredforDefinition1.(i)toholdandissatisfiedforlarge enough

ν

,c.f.[3].

As the first steptowards choosing thestate spaceX, we con- sidersemigroupgenerationforthelinearizedversionof(4)onX˜.A weak formulationforthestationary,linearizedversion of(4)sub- jecttozerocontrolanddisturbanceinputsisgivenby

0=−a

( v

,

ψ )

b

( v

,

v

e,

ψ )

b

( v

e,

v

,

ψ )ψ

H˜.

Lemma4. TheoperatorA˜definedby A˜=A˜2+A˜1,

A˜2x,

ψ

L2()=−a

(

x,

ψ )

,

A˜1x,

ψ

L2()=−b

(

x,

v

e,

ψ )

b

( v

e,x,

ψ )

, D

(

A˜

)

=D

(

A˜2

)

=

xH˜

ψ

H˜,

ψ

a

(

x,

ψ )

is X˜-continuous

generatesanexponentiallystableanalyticsemigrouponX˜.

Proof. We start by showing that a(·,·) is H˜-bounded and H˜- coercive, i.e.H˜ can be continuously and densely embedded inX˜ andthereexistc1,c2,

λ

>0suchthatforevery

φ

,

ψ

H˜

|

a

( φ

,

ψ ) |

c1

φ

H˜

ψ

H˜, (6a)

a

( φ

,

φ )

c2

φ

2H˜

λ φ

2X˜. (6b) Sincethenorm

(·)

X˜ isequivalenttothe

·

H˜ normthrough Korn’sandPoincare’sinequalities,weimmediatelyhaveforacon- stantc1>0andforany

v

H˜

a

( v

,

v )

=2

ν ( v )

2X˜c1

v

2H˜.

Similarly,foraconstantc2>0andany

v

,

φ

H˜,

|

a

( v

,

φ ) |

≤2

ν ( v )

X˜

( φ )

X˜c2

v

H˜

φ

H˜.

Assuch,a(·,·)isH˜-boundedandH˜-coercive,whichimpliesthatA˜2

generatesananalyticsemigroupTA˜2 onX˜ [2,Section2].

Regarding the trilinearform b(·,·,·), Assumption 3.(i) guaran- tees that

v

eH˜, c.f. [12, Ch. 5]. We have forconstants c3,c4>0 usingintegrationbypartsandSobolevembeddings

|

b

( v

1,

v

2,

ψ ) |

| v

1,

( v

2·

) ψ

|

+

| v

1·n,

v

2·

ψ

|

c3

v

1

L4()

v

2

L4()

ψ

H˜

c4

v

1

H˜

v

2

H˜

ψ

H˜

v

1,

v

2,

ψ

H˜.

NowA˜1L(H˜,X˜),thusperturbationtheoryofsemigroups,seee.g.

[7,Ch.III],impliesthatA˜generatesananalyticsemigroupTA˜ onX˜. ByAssumption3.(ii),TA˜ isexponentiallystable.

The fact that we may choose

λ

=0 in (6b) implies that the semigroupTA˜2 isexponentiallystableforany

ν

>0.Furthermore, A˜2 is self-adjoint andthe fractional powers (A˜2)δ are well de- fined. Domains of the fractional powers are defined by, c.f. [18, Ch.2],[14],

D

((

A˜2

)

δ

)

=

v

(

H2δ

())

2

·

v

=0,

( v

·n

) |

=0

, 0≤

δ

<14,

D

((

A˜2

)

δ

)

=

v

(

H2δ

())

2

·

v

=0,

v |

=0

, 1

4<

δ

1.

Thenorms correspondingto domainsofthefractional powersfor thefullrange

δ

∈Raregivenby

x

D((A˜2)δ)=

(

A˜2

)

δx

X˜.

Wenextutilizedomains ofthefractionalpowerstofinda“lifted”

statespaceX suchthatinparticularDefinition1.(iii)issatisfiedby (4).

ForthetranslatedNavier–StokesEq.(4),nonlinearityintheab- stractframeworkF isdescribedby

F

( v )

=−P

( v

·

) v

, Q=I, (7)

wherePistheLerayprojector,seee.g.[8,14].Thedomainsofdef- initionforFandQ aredictatedbythefollowingLemma.

Lemma5. For a (small)

δ

>0,choose X=D((A˜2)1/2+δ) andV= D((A˜2)δ).ThenDefinition1.(iii)holdsforF.

Proof. The proof is based on the “propertiesof multipliers”, see [17,Ch.4.6.1,Thm.1],[4,Lemma5.4],whichstatethatif

s2>s1, s2> d

2 , (8)

wheredisthespatialdimension,then Hs1·Hs2Hs1

(4)

isacontinuousembedding,where Hs1·Hs2:=

f g

fHs1, gHs2

.

Since d=2, we choose s1=2

δ

and s2=1+2

δ

, and apply the

aboveresult.Nowforaconstantc1>0and

φ

,

ψ

X

φ

i

j

ψ

k

Hs1()c1

φ

i

Hs2()

j

ψ

k

Hs1() (9a) fori,j,k

{ ξ

1,

ξ

2

}

,thusforsomeconstantsc2,c3>0also

( φ

·

) ψ

Vc2

φ

X

∇ψ

V

c3

φ

X

(

A˜2

)

1/2

ψ

V

=c3

φ

X

ψ

X. (9b) Utilizing (9), for

v

1,

v

2X and some constants c4,c5>0 we have

F

( v

1

)

F

( v

2

)

V

=

P

( v

1·

) v

1

( v

2·

) v

2

V

=

P

(( v

1

v

2

)

·

) v

1+

( v

2·

)( v

1

v

2

)

V

c4

( v

1

v

2

)

X

v

1

V+

v

2

X

( v

1

v

2

)

V

c5

( v

1

X+

v

2

X

) v

1

v

2

X,

thusF islocallyLipschitz.ClearlyF(0)=0,andif

v

1

X,

v

2

X<

γ

c for a large enough constant c>0, then (

v

1

X+

v

2

X)<

γ

,

whichcompletestheproof.

DuetoLemma5,wechooseforafixed(small)

δ

>0 X=D

((

A˜2

)

1/2+δ

)

as the state space for our abstract system presentation and de- note

Xs=D

((

A˜2

)

1/2+δ+s

)

s∈R,

withthecorrespondingnormsdefinedaccordinglyby

x

Xs=

(

A˜2

)

sx

X =

(

A˜2

)

1/2+δ+sx

X˜. NowV=X1/2,F:XV andQ=IVL(V). 3.2. Theabstractsystemformulation

Wedefinetheoperators

A=A2+A1:D

(

A

)

X, (10a)

A2=

ν

P

, A1

v

=−P

( v

e·

) v

+

( v

·

) v

e

, (10b)

D

(

A

)

=D

(

A2

)

=D

((

A˜2

)

3/2+δ

)

. (10c) Now A2

v

=A˜2

v

and A1

v

=A˜1

v

for

v

D(A). To verify that Definition 1.(i) holds on the state space X, we note that A gen- eratesastronglycontinuoussemigroupTAonX,c.f.[7,Ch.5].The semigroupTAisexponentiallystable,sinceforxX

TAx

X=

(

A˜2

)

1/2+δTAx

X˜

=

TA˜

(

A˜2

)

1/2+δx

X˜

TA˜

L(X˜)

x

X.

We still need to verifyDefinition 1.(ii).We do so forcontrols anddisturbancesoftheform(5)andobservationsuptothe“level of unboundedness” of a point observation. Using integration by parts,wehavefortheX-adjointofA1

A1

φ

=P

( v

e·

) φ

(v

e

)

T

φ

.

Properties ofmultipliers withthechoicess1=1+2

δ

,s2=2+2

δ

tosatisfy(8)imply,similarlyto(9),forany

φ

,

ψ

X1/2andacon- stantc>0

P

( φ

·

) ψ

Xc

φ

2

X1/2

ψ

2

X1/2,

P

( ∇φ )

T

ψ

Xc

φ

2

X1/2

ψ

2

X1/2.

SinceAssumption3.(i)implies

v

eX1/2(H2+2δ())2 [12,Ch. 5], wehaveA1,A1L(X1/2,X).

Assuch,theoryofadmissiblecontrolandobservationoperators, see[20,Ch.4–5],nowstatesthat

• LetY˜ beaHilbertspace.IfC˜∈L(X1/2,Y˜),thenC˜isanadmissi- bleobservationoperatorforTA2 anditsadjointC˜L(Y˜,X1/2) isanadmissiblecontroloperatorforTA2.

• The sets of admissible control (observation) operators for TA

andTA2 arethesame.

NotethataboveweassumedforY˜tobeself-dual.

Wefirstsearchforadmissibleobservationsfor(4)onthestate spaceX byconsidering observationssuchthatCL(X1/2,Y).Typ- icallythe“mostunbounded” observationofinterestwouldbe the pointobservation

Cpx

( ξ

,t

)

=x

( ξ

p,t

)

(11)

forsome

ξ

p.BySobolevembeddings,when ⊂R2,Hs()C()¯ for s>1,thus CpL(X,C). Thatis, all the observations of interestfor(4)areboundedoperatorsfromX toY.Assuch,C=C andifU,Ud andQ are admissiblecontrol operatorsforTA2,then Definition1.(ii)holds.

Consider next admissible control operators for TA2, thus also for TA. We start with the operator Q=IV =IX

−1/2. Note that in this case the “input space” V is not self-dual, but instead the correct dual is the X-dual of X1/2, i.e. V=X1/2. Thus we have QL(X1/2,V) and QL(V,X1/2), i.e. the triple (A,Q,C) is a regularlinearsystem.

Forasinglecontrolinputofthetype(5a),wehaveB=g(

ξ

).If gXs,thenBL(C,Xs).Thatis,if

gX1/2=D

((

A˜2

)

δ

)

,

thenBisanadmissiblecontroloperatorforTA2.

We concludethe section by gatheringourfindings inthe fol- lowingresult.

Theorem6. GivenAssumption3,assumethatthecontrolshapefunc- tionsgiandthedisturbanceshapefunctionsgjsatisfygi,gjX1/2= D((A˜2)δ)foreach i=1,2,...,m, j=1,2,...,d andasmall

δ

>0. ThenthetranslatedNavier–StokesEq.(4)withthedynamicsoperator (10), thenonlinearity(7),the control(5a),thedisturbance (5b)and py point observations (11) form a regular nonlinear system on the statespaceX=D((A˜2)1/2+δ).

4. Thecontroller

Weusealow-gain-typecontrollerdesignintroducedin[13]to solveProblem2.Theonlysysteminformationrequiredtoconstruct thecontrolleristhetransferfunctiongains

G

(

±i

ω

k

)

=C

(

±i

ω

kIA

)

−1B

ofthe linearizedsystem(A,B,C) forthefrequencies

ω

k=2

π

lk/T foreach lk∈V.A goodestimate for thesegainsof thelinearized systemcanbeobtainedexperimentallyfromthegainsofthenon- linearsystemN,see[13],androbustnessofthecontrollermeans that the approximate gains can be used to achieve the output trackinggoal.

The controller consistsoftwo finite-dimensional systems. The firstsystemF isdescribedbythetransferfunction

GF

(

s

)

=IY

nv

k=0

s2+

ω

2k

s2+

ε

s+

ω

2k

IY,

(5)

Fig. 1. The closed-loop system.

where

ε

>0 is the control tuning parameter. The second system Risdescribedbythetransferfunction

GR

(

s

)

=

nv

k=0

s2+

ω

2k

s2+2s+

ω

2k

×

nv

k=0

ρ

kRk si

ω

k

+

ρ

kRk s+i

ω

k

,

where

Rk=G

(

i

ω

k

)(

G

(

i

ω

k

)

G

(

i

ω

k

))

1, R−k=G

(

−i

ω

k

)(

G

(

−i

ω

k

)

G

(

−i

ω

k

))

−1,

ρ

k=

nv

j=k,j=0

ω

2j

ω

2k+2i

ω

k

ω

2j

ω

k2

,

ρ

k=

nv

j=k,j=0

ω

2j

ω

2k−2i

ω

k

ω

2j

ω

k2 .

WedenoteastatespacerealizationofGF onXF=CnF by

˙

xF

(

t

)

=AFxF

(

t

)

+BFuF

(

t

)

, xF

(

0

)

=xF0XF, yF

(

t

)

=CFxF

(

t

)

,

andastatespacerealizationofGRonXR=CnR by

˙

xR

(

t

)

=ARxR

(

t

)

+BRuR

(

t

)

, xR

(

0

)

=xR0XR, yR

(

t

)

=CRxR

(

t

)

+DRuR

(

t

)

.

After coupling the two subsystems of the controller as depicted in Fig.1,i.e.bysettinguF =yyr+yF anduR=yF,we havethe structure ofan errorfeedback controller (3) withz=[xF, xR]TXF×XR,

G1=

AF+BFCF 0 BRCF AR

, G2=

BF 0

, (12a)

K=

DRCF CR . (12b)

The followingresultisobtainedin[13]fortheclassofregular nonlinear systemsandwe formulateit fortheincompressible2D Navier–Stokesequations.

Theorem7. AssumethatG(i

ω

k)issurjectiveforeachk=1,2,...nv andtheassumptionsofThm.6hold.Thereexists

ε

>0suchthatan error feedback controller(3)with theoperatorschosenas (12)with 0<

ε

ε

solvesProblem2forthesystem(10),(11).

Proof. The proof follows directly from Theorem 6 and [13, Sec- tion5.2].

5. ANumericalExample

Let be the unit disk and consider the Navier–Stokes Eq.(1) with

ν

=1/25around a steadystate solutioncorrespond- ingtothebodyforce

fw

( ξ

1,

ξ

2

)

=

ξ

2

(

1

ξ

12

ξ

22

)

,

ξ

1

(

1

ξ

12

ξ

22

)

TH˜ and fu=0, fd=0.Our output trackinggoal isto have thepoint observation

y

(

t

)

=C

v

1

( ξ

,t

) v

2

( ξ

,t

)

=

v

2

0.4, −0.4 ,t

L

(

X,R

)

Fig. 2. The steady state velocity field ve(ξ), where color depicts speed of the fluid.

trackthereferencesignal

yr

(

t

)

=0.5sin

(

2t

)

(13)

despitethedisturbance fd

( ξ

,t

)

=Bdud

(

t

)

=P

0,

χ

d

( ξ )

T

(

1+cos

(

2t

))

,

where

χ

d is the characteristicfunction and d=[−0.4,−0.1]× [−0.4,−0.1].The outputtrackingistobeachieved,approximately andlocally,byusingthecontrol

fu

( ξ

,t

)

=Bu

(

t

)

=P

χ

u

( ξ )

, 0 Tu

(

t

)

where u=[−0.6,−0.3]×[0.1,0.4]. Now U=Ud=Y=R and since

χ

u,

χ

dHs()for any s<1/2 [19], also BL(U,X−1/2) andBdL(Ud,X1/2).Assuch,ifthesteadystate(

v

e,pe)islocally exponentiallystable,thenthetranslatedsystem(4)formsaregular nonlinearsystemonthestatespaceX.

WeusetheTaylor–Hoodfiniteelementspatialdiscretizationfor theNavier–Stokes equations.Withthe help offunctionsincluded inthe MatlabPDEtoolbox, theunit diskis approximatedby 694 triangleswiththemaximumedge lengthof≈0.1,whichleadsto approximationorderof1453 foreach ofthevelocity components and380forthe pressure.The steadystate solution (

v

e,pe),with thesteadystate velocitydepictedinFig.2,iscalculatedusingthe Newton’s method, and we assume pe(0)=0 to obtain a unique steadystatepressure.

We check numericallythat linearizationof the translatedsys- tem(4)isexponentiallystable. Thenwe designanerrorfeedback controller(12)withV=

{

0,1,2,3

}

andchooseasthecontroltun-

ingparameter

ε

=0.095toroughlymaximizethestabilitymargin ofthelinearizedclosed-loopsystem. Forthesimulation,werelax the incompressibility condition by using a penalty method with thepenaltyparameter

p=105,seee.g.[9,Ch.5.2],todecouple the fluid pressurefromthe fluid velocity.As the initial state, we use

xe0=

v

e

v

e1/2, 0 TX×Z,

where

v

e1/2(

ξ

) is the steady state velocity corresponding to the body force fw1/2=0.5fw and fu=0, fd=0. Evolution of the closed-loop system is then solved using Crank–Nicolson method withthetimestept=0.01togetherwithNewtoniteration.

Output tracking performance of the controller is depicted in Fig.3 anda snapshotof thefluid velocity at thetime t=120 is showninFig.4.

Thecontrollerachievesoutputtrackingof(13)withsatisfactory performance forthe chosen initial state despite the disturbance.

The effectofthedisturbance isnot clearlyvisibleinFig. 3,since

Viittaukset

LIITTYVÄT TIEDOSTOT

Regulation of markets and businesses is obviously a permanent element of international political-economic discourse. Table 5.3 indicates that, save for 2002, the FT kept regulation

Jos valaisimet sijoitetaan hihnan yläpuolelle, ne eivät yleensä valaise kuljettimen alustaa riittävästi, jolloin esimerkiksi karisteen poisto hankaloituu.. Hihnan

Based on the discretized ODEs, a linear quadratic regulator (LQR) controller is designed to determine the power levels of multiple microwave sources in this process to reach

Instead of exponential stabiliza- tion, we design an observer-based dynamic controller that achieves polynomial stability [1, 3] and rational con- vergence of energy for a class

The robust output regulation and internal model based controller design for linear infinite-dimensional systems and PDEs — with both distributed and boundary control — has

The output event of both models (controller and plant) is connected to the input event of this module (event), and the output event of this module (changed) is connected to the

In this paper, we presented gain-scheduling composite nonlinear feedback (CNF) control for a set of second-order linear parameter-varying (LPV) systems that

Based on the discretized ODEs, a linear quadratic regulator (LQR) controller is designed to determine the power levels of multiple microwave sources in this process to reach