• Ei tuloksia

View of Classification of acid sulphate soils of Finland according to Soil Taxonomy and the FAO/Unesco legend

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "View of Classification of acid sulphate soils of Finland according to Soil Taxonomy and the FAO/Unesco legend"

Copied!
12
0
0

Kokoteksti

(1)

Classification of acid sulphate soils of Finland

according to Soil Taxonomy and the FAO/Unesco legend

Markku Yli-Halla

AgriculturalResearch CentreofFinland,InstituteofResourceManagement,FIN-31600 Jokioinen, Finland, e-mail: markku.yli-halla@mtt.fi

Inorder toplace acidsulphate soils (a.s. soils) of Finland inan international context, fivepedons from cultivated a.s. soils fromLiminka, Ylistaro and Laitila onthe western coastof Finland were analyzedandclassified accordingto SoilTaxonomy and the revised legend of the FAO/Unesco Soil Mapof the World. Three of thepedons (Liminka 1and2, Laitila 1) had sulfuric horizons within 50 cm of soil surfaceandqualify asTypic Sulfaquepts.Onepedon (Ylistaro)had asulfuric horizon at

thedepthof 100-150cmandwasclassifiedas aSulficCryaquept.The fifthpedon (Laitila 2)didnot

have either a sulfuric horizonor sulfidic materials, but it had apFl<4.o andenough S04-S tobe classifiedas aSulficCryaquept. According tothe FAO/Unesco legend,allpedons wereclassifiedas ThionicGleysols.ThusTypic Sulfaqueptsand SulficCryaquepts(SoilTaxonomy)and Thionic Gley- sols (FAO/Unesco classification) occur commonly on the western coast of Finland. Asaresult of artificial drainage andleaching, they graduallyfail to meet therequirements ofa.s. soil classes and willbeclassifiedasTypic Cryaquepts. Intermsof the FAO/Unesconomenclature,ThionicGleysols becomeDystric GleysolsorGleyic Cambisolsovertime.

Keywords: FAO/Unesco Soil Mapof theWorld,pedogenesis, soilmorphology,soilpH,soil survey, SoilTaxonomy, sulphurcontent

ntroduction

Acid sulphate soils(a.s. soils)aresoils in which,

“as aresult of processes of soilformation, sul- phuric acid either will be produced, is being pro- ducedorhas been produced inamountsthat have a lasting effect on main soil characteristics”

(Pons 1973).Amorequantitativecriterion, need- ed for soilclassification,has been presented, e.g.

byvanMensvoort and Dent (1997): Ina.s. soils,

enough sulphuric acid is produced tobring soil pH below 4. In the revised legend tothe FAO/

Unesco Soil Map of the World(FAO 1988),these soils are called Thionic Gleysols, Thionic Flu- visols or Thionic Histosols. In Soil Taxonomy (Soil Survey Staff1996),a.s.soils aredispersed through severaltaxa.Themostcoherent and de- tailed classification ofa.s. soils by Dent (1986) makes the important distinction between ‘sul- phidic soils’ (or potential a.s. soils), ‘raw a.s.

soils’ thatareactively generating sulphuric acid

©Agricultural and Food ScienceinFinland Manuscriptreceived May 1997

(2)

and which, therefore, pose an environmental hazard,and ‘ripe acid sulphate soils’ thatarestill severely acid (pH 4 or less) but are no longer exporting acidity. The 1994 revision ofSoil Tax- onomy (Fanning and Witty 1993) seeksto dis- tinguish the ‘raw acid sulphate soils’ as Sulf- aquepts using a severe pH criterion (pH<3.5) for the diagnostic sulfuric horizon.

The a.s. soils ofFinland, mainly located on thecoastof the Gulf ofBothnia,have developed in sulfidic sedimentaccumulated during theLito- rina period of the Baltic sea (7000 - 3000 yr 8.P.). These soils were earlier studied mainly from the agricultural point of view (Kivinen 1938,Purokoski 1958, 1959, Erviö 1975, Erviö and Palko 1984).Since the 1980’s,the emphasis has been in environmentalaspects,particularly acid loading from these soils tosurface waters (Palko et al. 1985, 1987, Palko and Saari 1987, Hartikainen and Yli-Halla 1986, Palko 1988, 1994, Erviö 1991,Palko and Yli-Halla 1993).

Acid sulphate soils of Finland havenotbeen clas- sified accordingtointernationalsystems, but lo- cal criteria have been appliedtoidentifya.s. soils in national soil surveys. In Finland,Erviö (1975) and Erviö and Palko (1984) calledasoil an a.s.

soil if the subsoil(40-60cm or50-70cm)hada pH(H,G, 1:2.5)<5.0 and/oraS04-Scontent>lOO mg I

1

ofsoil, determined in air-dried samples.

More recently (Palko and Saari 1987, Palko et al. 1987),theuseof S04-Scontentasthe criteri- on for classification was discontinued and the

pH was determined in the field in a moist soil.

The minimum pH (<5.0) of the profile was the principal criterion in theclassification, and re- dox potential was a secondary variable.

The purpose of this paper istoplace thea.s.

soils ofFinland in aninternationalcontext.Five representative pedons from three a.s. soil areas on the western coast of Finland are classified accordingtoSoil Taxonomy and the revised leg- end tothe FAO/Unesco Soil Map of the World.

Acid sulphate soils in Soil Tax- onomy and FAO/Unesco legend

A sulfuric horizon and sulfidic materials (Table 1)areessential in the classification ofa.s. soils.

In Soil Taxonomy(Soil Survey Staff 1996), the determination of sulfidic materials is based on soil pH before and after aerobic incubation.

Sulfidic materials are stable in anaerobic envi- ronments. A sulfuric horizon develops when sulfidic materialsare oxidized to sulfuricacid, resulting in asufficient decrease of pH. In Soil Taxonomy, evidence that the acidity is caused by sulfuric acid is required. Accepted evidence is at leastone of the following: 1)presence of jarosite, 2) highcontent of water-soluble S04-S in the horizon concerned and3)sulfidic materi-

Table 1.Characteristicsof sulfidic materials and the sulfuric horizon.

FAO/Unesco Soil Mapof the World Taxonomic Soil Taxonomy

feature

Sulfidicmaterials pH>3.5.After incubationpHdecreases Total S>0.75% mostly inthe form of sulfide byatleast0.5units and reaches apH<4. and apH>3.5.Afterdrainage pHdecreases

below3.5.

Sulfurichorizon pH<3.5and thickness at least 15cm pH<3.5and thickness at least 15cmand andone or moreof thefollowing: generally jarositemottles

-jarositeconcentrations

- directly underlyingsulfidic materials

- water-soluble SO-S>0.05% 4

248

(3)

Table2.Generalrequirements ofsomeacidsulphatesoil unitsaccordingtoSoilTaxonomy(SoilSurvey Staff 1996)and the legend of the FAO/Unesco Soil Map of the World (FAO 1988).

Soilunit Description

SoilTaxonomy:

Sulfaquents Entisols withaquicsoil moisture regimesand sulfidic materials within50cmof soil surface

Sulfaquepts Inceptisols with aquic soil moistureregimes and sulfuric horizons within50cm of soil surface

SulficCryaquepts Inceptisols with aquicsoil moistureregimes andcryictemperatureregimesand withone or moreof thefollowing:

- asulfuric horizon between 50and 150cmfrom soil surface

- sulfidic materials within 150cmof soil surface

- within 150cmof soil surfaceahorizon which has all the characteristics of asulfuric horizon exceptpHwhich is between3.5and4.

FAO/UNESCO Soil Mapof the World:

ThionicGleysols Gleyic properties within0.5m of soil surface.

Sulfurichorizonsorsulfidic materials within 125cm of soil surface

als below the acidic horizon. A sulfuric horizon musthave apH <3.5. This requirementattempts to include horizons where sulfide is presently oxidizing(rawacid sulphate soils in Dent’s clas-

sification) and to exclude horizons where all sulfide has already disappeared (Fanning and Witty 1993).The legend of the FAO/Unesco Soil Map of the World (FAO 1988)uses merely the oxidizedpH value which mustbe <3.5.

The essence of the taxonomic definitions of the a.s. soils is to include soils which have enough sulfuric acidtoexhibita pH <3.5 (FAO 1988) or <4.0 (Soil Survey Staff 1996), or enough sulfidetoproduce, uponoxidation, apH below these values. In Soil Taxonomy, a.s. soil units includegreat groups in Entisols, Incepti- sols andHistosols,e.g. Sulfaquents, Sulfaquepts and Sulfohemists,respectively, and Sulfic sub- groups in Entisols and Inceptisols, e.g. Sulfic Endoaquents and Sulfic Cryaquepts, respective- ly. In thatsystem, soils in which sulfide is oxi- dizing and reduced soils which contain sulfidic materials butnot an acidic horizon are classi- fied into different units. In the revised legend of the Soil Map of the World (FAO 1988),thionic units are recognized in Histosols, Fluvisols, Gleysols and soils with a sulfuric horizon and

those with only sulfidic materialsareclassified in the sametaxa.The requirements ofsomerel- evanta.s. soil unitsare summarized in Table 2.

Material and methods

Five pedons representative of the range ofa.s.

soils in Finland were described from Liminka (twopedons), Ylistaro and Laitila (twopedons) in Northern and Southern Ostrobothnia and SouthwesternFinland, respectively (Fig. 1).

In Liminka, the study area (64°50’N, 25°24’E)is flat and about I mabove the level of the Gulf of Bothnia. It roseabove thesealevel 100-150 years ago. The Liminka 1 pedon (Fig.

2) has been cultivated for grass and small grains for about 15 years, butwasfallowed atthe time of inspection. Initially, the field hadopendrains, but it was pipe-drained 8 years priortoinspec- tion. The ground water was not encountered within 1 m of soil surface on August 13, 1992 (sampling). The Liminka 2 pedon comes from an experimental polder (described in detail by Palko 1988) which wasconstructed8 years be-

(4)

fore sampling. At thesame time,the sampled plot was pipe-drained to the depth of 113 cm and limed (15 tons dolomitic limestone ha

1

). Oats

had been grown in the field for three years, after which croppingwasabandoned and thearea was now covered witha grassy vegetation. Ground

water was at 95 cmbelow the soil surface on August 14, 1992.

The Ylistaro pedon (62°55’N, 22°29’E) re- presents the major acid sulphate soilareaof Fin- land(Purokoski 1958, Erviö 1975). The pedon (Fig. 3) is locatedon aflat coastal plain withan elevation of26 m asl. The area had been culti- vated for about 100 years but has been fallow since 1991. Different grasses grow on the area now.Pipe drainage has been installed. Nowater tablewas encountered above 150cm on Octo- ber3, 1996.

The Laitila pedons (60°53’N, 21°4I’E) are located in acultivated Valkojärvi polder (1000 ha) 10 m asl. Thea.s. area, described by Palko

etal. (1985), is drainedto the River Sirppujoki by pumping. During the Litorina period thearea was agulf of the seaand later it became alake.

Lake Valkojärvi wasdrained for agriculturaluse piecemeal between the 1930’s and 1966. Small grain and sugarbeet have been grown. The area of the Laitila1 pedon wasdrainedabout30 years ago. The site is the lowest-lying spot of the Valkojärvi polder. No groundwaterwas encoun- teredonSeptember 24, 1996. The Laitila 2 pe- don is about 200 m away from the Laitila 1 pe- don. Groundwater(pH 3.5) was 95 cmbelow the soil surface onSeptember 15, 1992.

In all pedons, moist Munsell colours were recorded. Where mollic/umbric epipedonswere considered, also dry colours were determined.

Each horizonwassampled, and samples air-dried and groundtopass a2-mm sieve priorto analy- sis. In the Liminka 1 and 2 and Laitila 2 pedons, redox potential and soil pHwere determined in the field in the soil pitat intervals of 10cm by inserting electrodes directly into the soil. A small amount of deionizedwater was addedto allow propercontactbetween the soil and the electrode (Puustinen et al. 1994).The samples from the Laitila 1 and Ylistaro pedonswere transported tothe laboratory in plastic bags, and the pH(1:1) of the moist samples was determined the day after sampling. The pH of all soil samples was also measured after aerobic incubation and dry-

ing. Particle size distribution of mineral materi- alwas determined by apipette method. The to- tal contentsofC, Nand S were determinedus- ing aLeco dry combustion apparatus (CNS- -1000). Because the sampleswere acid, all Cwas assumed to be organic. After incubation for 2 months,SO-S4 wasextracted with0.01 MCaCl,2

and determined by Inductively Coupled Plasma Emission Spectrometry (ICP). Exchangeable cations (Ca, Mg, K, Na) were extracted with I M NH4-acetate atpH7. Acidity released from the soilwas determined by titrating the soil ex- tractbacktothe original pH with 0.02 M NaOH.

ThesumofK, Na, Ca,Mg and acidity wastaken as the cation exchange capacity (CEC)and the base saturationwascalculatedasthepercentage of Ca+Mg+K+Na of CEC. Free acid, present Fig.I.Locations of the pedons.

250

(5)

originally in the soilorformed upon drying and partial oxidation ofsulfide, probably results in a slight overestimation of CEC and underesti- mation of base saturation in the most acid (pH<3.5) horizons and in the horizons contain- ing sulfidic materials. Possible presence of free sulphate salts also adds tothe overestimation of CEC. Poorly crystalline Fe and

A 1

(hydr)oxides wereextracted with0.2 M NH4-oxalate (pH 3.0) in the dark (McKeague and Day 1966).Iron and

A 1 were

determined by ICP.

Results

All the soils were mineral soils. The organic C content was usually highest in the Ap horizons (Table 3), but the deeper layerswere also richer in organic C than mineral soils in general, par-

ticularly in the Laitila pedons. The Laitila 1 pe- don had the highest C content at the depth of 35-50cm,presumably inherited from the initial sediment. The pedons represent the following particle size classes:

Pedon Soil FAO/

Taxonomy Unesco legend Liminka 1

and2 coarsesilty medium textured Ylistaro fine silty medium textured Laitila I

and2 fine fine textured

Basedonthe morphological descriptions(Ta- ble 4), it canbe concluded that all pedons had

ochric epipedons. Relatively high pH values in the Ap horizons of all pedons except Ylistaro (Table 5) are attributableto liming. All pedons had cambic B horizons(as indicated by the de- velopment ofstructure)and aquic moisture re- Fig.2,The Liminka 1 pedon. Fig. 3.The Ylistaropedonfrom0.80m below.

(6)

Table 3.Selectedphysicaland chemicalpropertiesof thepedons."

Depth Clay Silt C Sm NM CEC Base satu- Fe21 Al21

cm % % % % % cmol(+)/kg ration,% g/kg g/kg

Liminka 1

0-25 10 82 2.9" 0.19" 0.19" 17.5 89 10.1d 1.7J

25-35 8 86 0.4" 0.17» 0.04a 7.1 53 4.8'b 0.5»

10 86 0.4a 0.27b 0.04" 8.8 46 3.8" 0.5"

45-65 10 85 0.6" 0.26" 0.06" 13.1 44 6.0b 0.5"

65-85 12 86 0.7" 0.45d 0.06" 15.5 48 6.0b I.l'

85-100 13 86 0.7" 0.36c 0.06" 13.7 80 8.0C 0.6b

Liminka2

0-25 11 83 6.0b 0.29" 0.28b 29.6 81 8.5b 1.6'

25-65 9 85 0.5» 0.24" 0.05" 11.6 41 5.7» 0.6"

65-72 10 80 0.6» 0.66b 0.06" 18.2 32 6.0» 1.2b

72-85 11 86 0.6» 0.73" 0.06» 14.1 59 7.9" 1.1"

Ylistaro

0-30 24 64 4.6d 0.17» 0.40" 20.5 9 10.5" 3.4b

30-52 28 64 1.1»b 0.19» 0.19ab 12.3 13 7.9"b 1.1»

52-70 27 67 1.0» 0.17a 0.18» 9.5 13 6.1a 0.9"

70-100 26 67 1.0» 0.21" o.lB' 11.1 17 5.7a 0.9a

100-125 28 65 0.22" 0.22h: 12.1 16 8.51* 1.0»

125-150 26 65 13' 0.31b 0.24c 13.2 29 7.8"b 1.0"

Laitila 1

0-25 43 53 6.6' 0.22» 0.72' 27.3 75 7.3c 3.0'

25-35 51 46 6.6' 0.53" 0.87d 30.4 13 17.8f 1.5"

35-50 48 46 7.6d 0.77c 1.08e 34.2 15 16.5' 1.6°

50-90 49 49 3.0" 1.72' 0.44» 49.7 25 8.6d 3.5C

90-125 50 48 3.0» 1.54b 0.44" 51.2 55 7.1" 2.4d

125-150 49 49 3.7" 1.68c 0.54" 51.2 61 5.9" 1.4b

150-180 53 46 3.6b 1.45d 0.58b 34.5 84 2.6" 1.2"

Laitila2

0-25 48 50 4.3b 0.24» 0.39c 23.6 53 8.7b 1.6'

25-35 53 44 2.6» 0.38" 0.33» 19.4 18 10.7" 1.2»

35-55 48 49 2.7» 0.43b 0.35" 20.2 16 12.0de 1.2»

55-85 48 50 2.5" 0.44" 0.32» 20.1 18 13.5* 1.3b

85-100 52 46 2.7» 0.82" 0.35b 23.6 25 4.0» 2.7d

"Results of eachpedon and soil characteristicswere tested separately. Means marked with thesamesuperscriptdo not differ atP=0.05.Results withoutsuperscriptswerenottested,owingto toofewreplicates.

21NH4-oxalateextraction,pH 3.0

gimes. Gleyic properties, as indicated by iron (hydr)oxide cutansonped faces, wereexhibited within50cmof soilsurface,meeting the require-

mentsof Gleysols of the FAO/Unesco legend.

The highcontentsof oxalate extractable Fe(Ta- ble 3) are in accordance with the thick Fe hy- droxide coatings onped faces occurring inmost investigated pedons.

AccordingtoSoil Taxonomy, the pedons be- long to the aquic suborder of Inceptisols, Aquepts. ThroughoutFinland, themeanannual soiltemperature atthe depth of 50cmis between 0 andB°C,and themean summer temperature is below 15°C (Table 6). Thus the entire country hasacryictemperatureregime (SoilSurvey Staff

1996).

(7)

Table4. Morphologicalcharacteristics of thepedons.

Hor- Depth Matrix Mottles andcutans" Text- Struct-

izon cm colour colour ure2) ure3)

Liminka I Ap 0-25 5 Y4/2 c7.5YR3/4 si gr

Bgj I 25-35 5Y5/2 c7.5YR3/44 ',f2.5 Y7/641 si Ifsbk

Bgj2 35—45 5Y5/2 m2.5 Y7/641,m7.5YR3/44>, si 2fsbk

c7.5YR4/65'

Bg 45-65 SYRS/2 c7.5YR3/4s>,f

2.5 Y 7/6

si Imsbk

CB 65-85 IOYR4/1 f10YR 3/651 si 2msbk

Cg 85-100 2.5 Y 2.5/1 fIOYR3/6!> si

Liminka2 Ap 0-25 IOYR2/26 ’, c7.5YR3/4 si gr

5Y 5/271

Bgj 1 25-65 5Y5/2 c7.5YR3/44 ',c2.5 Y7/64 ', si Imsbk

c 10YR 3/65 '

Bgj2 65-72 IOYR4/I c

2.5 Y

7/6”,c7.5YR3/4” si Imsbk

CBg 72-85 2.5 Y2.5/1 si 2csbk

Ylistaro Ap 0-30 7.5YR 2/2, IOYR6/28> sil Imsbk

Bw 30-52 5Y5/1 c7.5YR4/44'-5> sil 2msbk

Bgj 1 52-70 5Y5/1 m7.5YR3/44>s',c

2.5 Y 8/4

4' 5 > sil 2msbk

Bgj2 70-100 5Y5/1 m SYR 3/34l-5),2.5 Y8/44|-5) sil 2cpr

Bgj3 100-150 5 Y5/1 m7.5YR3/44>s>,m2.5 Y8/44l 5> sil 2vcpr

Laitila! Ap 0-25 2.5 Y 3/2,2.5Y6/281 sic Imsbk

AB 25-35 2.5Y4/2 m 10YR 3/4 sic 2m pi

Bgl 35-50 2.5Y4/2 m7.5YR4/651, m SYR 3/451 sic 3mpr

Bg2 50-90

2.5 Y 4/2

m7.5YR4/6s',m SYR 2.5/251 sic 3cpr

BCg 90-125 2.5Y4/I C7.5YR4/65' sic 2cpr

C 125-180 2.5Y4/1 sic massive

Laitila2 Ap 0-25 2.5 Y3/2,2.5Y6/28' sic Imsbk

AB 25-35 2.5Y4/2 m 10YR 3/44,5),vf 2.5 Y7/6 sic 2msbk

Bgl 35-55 2.5 Y 4/2 m7.5YR4/6s',m SYR 3/4s>, sic 3mpr

vf 2.5 Y7/6

Bg2 55-85 2.5Y4/2 m7.5YR 4/6”,m SYR 2.5/251 sic 3cpr

BCg 85-100 2.5Y4/1 c7.5YR4/65),f2.5 Y 2.5/19' sic 3cpr

11 m=many,>20%;c=common,2-20%;f=few,<2%

2) si=silt,sil=siltloam,sic=silty clay

3) I=weak, 2=moderate, 3=strong, f=fine,m=medium,c=coarse,vc=verycoarse gr=granular, sbk=subangular blocky, pl=platy, pr=prismatic

41 aroundpreviousrootchannels,yellowzonebetween dark brownzone 51 onpedfaces

61 organicmatterand7)mineral material notcompletelymixed

81 drycolor

91 interiorsinpeds

Both Liminka pedons had horizons that had apH<3.5 (Fig.4), aS04-S contentabove0.05%

(Table 5)and yellow jarosite mottlesatthe 30- 65 cmdepth (Table 4), which arethe criteria of sulfuric horizons. Because they occurred within

50 cm of soil surface, these pedons classify as coarse silty, cryic Typic Sulfaquepts (SoilSur- vey Staff 1996) and medium-textured Thionic Gleysols(FAO 1988).Both Liminka pedons also have sulfidic materials below the acidic horizons

(8)

Table5.SoilpHand S04-S contentof thepedons."

Depth pH pH S04-S21

cm moist dried rng/kg

Liminka 1

0-25 6.5' 6.1" 623'

25-35 4.7** 4.0" 271»

35-45 3.9"b 3.6d 323"

45-65 3.4" 3.4= 655d

65-85 5.3ta 3.5' 1325f

85-100 6.5' llO6c

Liminka2

0-25 5.6" 5.7" 854"

25-65 3.4" 3.4" 661"

65-72 4.6"" 2.9C 2442"

72-85 5.4" 3.4b 1496'

90 6.0" n.d. n.d.

Ylistaro

0-30 4.3' 4.2d 29"

30-52 3.9" 3.7' 42"

52-70 3.8' 3.5' 60

70-100 3.5b 3.3* 112"

100-125 3.4" 3.3" 156'

125-150 3.4" 3.4"* 480f

Laitila 1

0-25 5.9' 5.7' 222"

25-35 3.5"b 3.3' 413"

35-50 3.3" 3.0" 1410=

50-90 3.8" 2.8" 5777f

90-125 6.0 3.1"* 4329'

125-150 7.6d 3.0*" 4250»

150-180 7.5d 3.7d 3394d

Laitila2

0-25 5.3' 5.1" 61"

25-35 3.7" 3.8" 156"

35-55 3.4"b 3.5C 227'

55-85 3.2" 3.4' 462d

85-100 3.6" 3.3' 2069'

11Results of each soil and soil characteristicsweretested separately.Means marked with thesamesuperscriptdo not differ atP=0.05.

21 Incubated samples, 0.01 MCaCl2extraction n.d.=notdetermined

(below 65cm), asindicated by the drop in pH upondrying (Table 5). These black layers had negative redox potentials (Fig.2)and the colour ofiron monosulfide although these layers didnot

meetthe total S requirement (0.75%) of sulfidic materials in the FAO/Unesco legend.

The Ylistaro pedonwas oxidized throughout the sampling depth asindicated by the low pH Fig. 4.Soil pHand redoxpotentialof the Liminka Iand2 and Laitila2 pedons,measured inthe soilpit.

(9)

Table6.Soil temperaturesin Finland, measured at thedepthof50cm.

Location Period Mean Mean

annual summer

°C °C

Jokioinen 60°49'N, 23o3O'E 1957-1970 5.9" 12.7"

Ylistaro 62°57,N, 2203TE 1968-1980 5.521 13.12 '

Sodankylä 67°22'N,26039'E 1963-1970 3.0" 11.8"

Utsjoki 69°45'N,27°02'E 1964-1970 1.9" 6.2"

"

Finnish Meteorological Institute (1979)

2) AgriculturalResearch Centre ofFinland,unpublished data

which didnot change upon aerobic incubation (Table 5).Long-term drainage has lead toleach- ing of S04-S to below the requirement for the sulfuric horizon in Soil Taxonomy. However, below52cm, jarositewas present (Table 4), an alternative criterion of the sulfurichorizon,and below 100cmthe pH was<3.5(Table 5).Thusa sulfuric horizonwas present at 100-150cm.The Ylistaro pedon is classifiedas a fine silty Sulfic Cryaquept(SoilSurvey Staff 1996).In the FAO/

Unesco legend, the pH<3.5 is sufficienttoiden- tify asulfurichorizon, and this pedon classifies as a medium-textured Thionic Gleysol (FAO

1988).

The Laitila 1 pedon hadapH<3.5 andahigh content of S04-S in the 35-50cm layer, which qualifiesas asulfuric horizon(Table 5).Very lit-

tleor no jarosite was observed. At 50-150 cm there were sulfidic materials according to the requirements ofboth classificationsystems(Ta- ble 2). The pedon classifies as a fine,cryic Typ- ic Sulfaquept(SoilSurvey Staff 1996)andafine textured Thionic Gleysol (FAO 1988).

In the Laitila 2 pedon therewas a layer at 40-85cmwhich hadapH<3.5 in moist soil (Fig.

4). None of the other requirements ofa sulfuric horizon of Soil Taxonomy were fulfilled: nei- ther jarositenorsulfidic materials occurred with- in the sampling depth, and thecontentof S04-S wastoolow. However,at85-100cmtherewas a S04-S content>0.05% andapH<4.O(Table 5), allowing the soiltobe classifiedas afine Sulfic

Cryaquept(SoilSurvey Staff 1996). Moreover, the redox potential reached avalue of0 mV at

approximately 100cm(Fig. 2).Sulfidic materi- als can be expected below this depth, support- ing the above classification. According to the FAO/Unesco legend, a sulfuric horizon occurs at40-85cmin this soil. Therefore,Laitila 2 isa fine-textured Thionic Gleysol.

Discussion

Major processes after drainage of soils formed in sulfidic sediments include 1) oxidation of sulfidic materialsto sulfuric acid witha conse- quent decrease of pH and 2) leaching ofwater- soluble components (sulphate accompanied by acid and basecations),resulting in the decrease of base saturation. The pedons of this studycan be arranged according to decreasing base satu- ration and decreasingcontents of sulfidic mate- rials and sulphate asfollows:

Laitila 1 >Liminka 2>Liminka 1 >Laitila2

>Ylistaro

The Liminka 1 and 2 and Laitila 1 pedons (Typic Sulfaquepts/Thionic Gleysols) contained sulfidic materials and sulfuric horizons with high contents of easily soluble S04-S. The Laitila 1

(10)

pedon is placed first because it is the only pedon which contained sulfidic materials also accord- ingtothe criteria of the FAO/Unesco legend. The sulfuric horizonwascloser tothe soil surface in the Liminka 2 pedon than in the Liminka I pe- don and therefore it has more pronounced a.s.

characteristics than the Liminka 1 pedon. The Ylistaro and Laitila2 pedons (Sulfic Cryaquepts/

Thionic Gleysols)wereoxidized and leachedto greater depths, resulting in lower base satura- tion. The Laitila2 pedon hada sulfuric horizon only accordingto the criteria of the FAO/Unesco legend. Itwasmuch moreoxidized and leached than the Laitila 1 pedon nearby, because the Laitila2 pedon was slightly higher in the land- scape while the Laitila I pedon was taken from the more poorly drained deepest point of the polder. However, owing tothe lower base satu- ration and S0

4-Scontent,the Ylistaro pedon can be considered themostleachedoneand is placed last in the sequence.

Accordingtothis investigation, cultivateda.s.

soils along the western coast of Finland com- monly qualify as Typic Sulfaquepts (Soil Sur- vey Staff 1996).The soils of Mälsor(Koivulah- ti), Bäckby (Ähtävä)and Vaasa in Southern and Central Ostrobothnia(Hartikainenand Yli-Hal- la 1986, Palkoetai. 1987, and Erviö 1991,re- spectively) probably also meetthe requirements of Typic Sulfaquepts. Thepresent study and pre- vious investigations suggest that the soils of Storsjö (Lapväärtti) in Southern Ostrobothnia (Hartikainen and Yli-Halla 1986,Palko and Saari 1987)and many soils in the Sirppujoki catch- mentin Southwestern Finland (Palkoetal. 1985) canbe classified as Sulfic Cryaquepts. The oc- currenceof Sulfic Cryaquepts inFinland, in ad- ditionto the Swedish soils(Öborn 1989), justi- fies the recognition of thistaxonwhichwasadd- ed only in 1992.

Pedogenesis results in gradual changes in the soils formed in sulfidic sediments. Besides arti- ficial drainage, pedogenic transformations ina.s.

soils arepromoted also by the postglacial land uplift which continues atthe annualrate of4-8 mm onthewestern coastof Finland. Thepresent pedons constitute asequence exemplifying dif-

ferentstages ofpedogenesis ofa.s. soils. Initial- ly, all of themwere probably Sulfaquents, de- veloping into Sulfaquepts when drained for ag- riculture. Over time the sulfuric horizonmoves downwards andaSulfaquept is transformed into aSulfic Cryaquept like in the Ylistaro pedon which exhibitsasulfuric horizon below 100cm.

That soil probably once had a sulfuric horizon below 50 cmbecause there was still abundant jarositeatthat depth. The Ylistaro pedonresem- bles the two Sulfic Cryaquepts (Ängesby and Ersnäs) from Northern Sweden(Öborn 1989) which contained jarosite but were low in S04-S and had themostacidic horizons atthe depth of 70-1 10cm.

Principally, a similar sequence asdescribed above was presented by Fanning and Fanning (1989) in an East-Texas environment where a Sulfaquentdeveloped intoaSulfaquept and fur- ther into aSulfic Endoaquept and finally intoa Haplustalf and a Vertic Albaqualf. In the cool and humid climate ofFinland, cultivated a.s.

soils are eventually transformed from Sulfic Cryaquepts to Typic Cryaquepts (SoilSurvey Staff 1996). In terms of the FAO/Unesco sys- tem,Thionic Gleysols become Dystric Gleysols or Gleyic Cambisols. The Härkmeri soil (Lapväärtti) in Southern Ostrobothnia(Yli-Hal- la and Hartikainen 1984)represents this final stage. It hadapH(CaCl2)of3.5 in aerobic sub- soil, but none of the other requirements of the a.s. soils weremet.Typically, low pH isa more persistent soil characteristic than a high S04-S

content.

In arecent survey (Puustinen et al. 1994), approximately 300,000 ha of cultivated soils in Finland witha minimum pH<5 in subsoilwere recognized as a.s.soils. This estimate is certain- ly much greaterthan the area of soils meeting the requirements ofa.s. soils as stated in Soil Taxonomy or the FAO/Unesco Soil Map of the World. The national criteriacan also be ques- tioned from the environmental point of view.

Based on the above results, itcanbe concluded that soils with subsoil pH values of4-5(a.s. soils according tothe national criteria) do not con- tain actively oxidising sulfide or appreciable

(11)

quantities of acidic solutes. These soils may have passed theraw, acid-generating phase ortheir sulfide contentwas too low in the first place to produce sufficient sulfuric acid to lower the pH below4.0.Therefore,soils with subsoil pH val- uesbetween4 and 5 donotpresent a hazard of acid loading to the recipient water courses. If these soils are included in a.s. soils, the envi- ronmental problems caused by a.s. soils in Fin- land are apparently overemphasized and may draw attention of authorities away from there-

mediation of the acid loading in areas with the highest loading potential.

Acknowledgements.The author thanksDr.Jukka Palko from the North Ostrobothnia RegionalEnvironment Centre in Oulu forhelpinglocate and sampletherepresentative pe- dons inLiminka andLaitila, Mr. Antti Raittila and Mrs.

MirjaPalttila,M.Sc., forhelping samplethe Laitilapedons andDr.Delvin S.Fanning from the University ofMary- land, USA, Dr. DelbertL. Mokma fromMichigan State University,USA, andDr.David Dent from theUniversity of EastAnglia, England,forreviewing thismanuscript.

References

Dent,D. 1986. Acidsulphatesoils:a baseline for research and development.ILRIPublication 39. Wageningen, TheNetherlands, 204 p.

Erviö, R. 1975. Kyrönjoen vesistöalueenrikkipitoiset viljelysmaat. Summary: Cultivated sulphate soils in the drainagebasin of river Kyrönjoki. Journal of the Scientific Agricultural Society ofFinland47:550-561.

- 1991.Chemical propertiesof air-dried samplesfrom an unlimed and limed acidsulphatesoilprofileand leachingofelements from theprofiles.Annales Agri- culture Fenniae 30: 221-229.

- &Palko, J.1984.Macronulrient and micronutrient sta-

tus of cultivated acidsulphate soils atLiminka, Fin- land. Annates Agriculture Fenniae 23: 121-134.

Fanning,D.S, &Fanning,M.C.B. 1989. Soil:morpholo- gy, genesis and classification. John Wiley and Sons.

395p. New York.

- &Witty, J.E. 1993. Revisions of Soil Taxonomy for

acid sulphate soils.In;Dent, D.L.&Mensvoort,M.E.F.

van(eds.). Selected papers of the Ho Chi Minh City symposium on acid sulphate soils.ILRIPublication 53: 61-69,

FAO 1988. FAO/Unesco SoilMapof the World. Revised legend, with corrections. World Resources Report 60, FAO, Rome. Reprinted asTechnical Paper20, ISRIC, Wageningen, TheNetherlands, 1994.140p.

Finnish Meteorological Institute. 1979.Results ofsoiltem- perature measurementsinFinland1961-1970. Soil

temperature measurements3. 59p.

Hartikainen, H.& Yli-Halla, M.1986.Oxidation-induced leaching of sulphate and cations from acid sulphate soils. Water, Airand Soil Pollution 27: 1-13.

Kivinen, E. 1938.Oberdie Eigenschaften der Gyttja- böden. Bodenkunde und Pflanzenernährung9-10:

122-134.

McKeague,J.A.&Day,J.H. 1966. Dithionite- and oxalate- extractable Fe and Al as aids indifferentiatingvari- ous classes of soils. Canadian Journal of Soil Sci-

ence46: 13-22.

Mensvoort, M.E.F.van & Dent, D. 1997.Acid sulphate soils. Advances inSoil Science22: 301-335.

Öborn,I. 1989.Propertiesand classification of some acid sulphate soilsin Sweden.Geoderma45: 197- 219.

- 1994.Morphology, chemistry, mineralogyand fertili- ty ofsomeacid sulfate soilsinSweden. SwedishUni- versityof Agricultural Sciences. Department of Soil Science. Reportsanddissertations18. 65 p.Ph D.

Thesis.

Palko,J. 1988. Happamiensulfaattimaiden kuivatus ja kalkitus Limingan koekentällä 1984-87. Summary:

Drainageand liming of acid sulphate soils inthe pol- der in Liminka,Finland 1984-87. NationalBoardof

WatersandEnvironment. Publications19. 86p.

- 1994.Acid sulphate soils and their agricultural and environmental problemsinFinland. Acta Universita-

tis Ouluensis C. Technica75. 58p. Ph.DThesis.

- , Räsänen, M.&Alasaarela,E. 1985.Happamiensul- faattimaiden esiintyminenjavaikutus veden laatuun Sirppujoenvesistöalueella. National Board of Wa- ters. Report260,95p.

Räsänen, M. &Alasaarela, E. 1987.Luodon-Öjan- järvenvaluma-alueen maaperän ja vesistön happa- muuskartoitus.Summary:The survey of the soil and water acidity inthe catchmentareaofLuodon-Öjan- järvi. National Board of Waters and Environment.

Publications 11:61-100.

- &Saari, M, 1987.Lapväärtin-lsojoenvesistöalueel-

la sijaitsevan Storsjön järvikuivion happamat sulfaat- timaat. Summary: Acid sulphate soilsinthe drained lake area or Storsjöinthe drainage basin of river Lapväärtti-lsojoki.NationalBoard ofWaters and En- vironment. Publications 11: 3-22.

- &Yli-Halla, M. 1993.Assessment and managament

ofacidityrelease upon drainage of acid sulphate soils in Finland. In: Dent, D.L. &Mensvoort, M.E.F. van (eds.).Selectedpapersof the HoChiMinh Citysym- posiumon acid sulphate soils. ILRI Publication 53:

411-418.

(12)

Pons, L.J. 1973.Outlineofthegenesis,characteristics, classification and improvement of acid sulfate soils.

In: Dost, H. (ed.). Proceedings of the international symposiumonacid sulphate soils.ILRIPublications 18, I: 3-27.

Purokoski, P. 1958. Die schwefelhaltigenTonsedimente in dem flachlandgebietvonLiminka imLichte che- mischer Forschung. AgrogeologischePublicationen 70. 85p. Helsinki.

- 1959. Rannikkoseudun rikkipitoisista maista. Refe- rat: Überdie schwefelhaltigen Boden ander Kuste Finnlands. Agrogeotogische Publicationen 74. 27p.

Helsinki.

Puustinen, M., Merilä, E., Palko, J.&Seuna, P. 1994.

Kuivatustila, viljelykäytäntö javesistökuormitukseen vaikuttavat ominaisuudet Suomen pelloilla. Summa- ry: Drainage level,cultivation practices and factors affecting load on waterways inFinnish farmland.

National Board of Waters and Environment. Report 198. 323p.

Soil Survey Staff 1996. Keys to Soil Taxonomy.7th ed.

USDA. Natural Resources Conservation Service. U.S.

Government Printing Office.644p.

Yli-Halla, M.&Hartikainen, H. 1984. Rikin, raudan,alu- miininja mangaaninhuuhtoutuminen kolmen hap- paman sulfaattimaaprofiilin kerrosnäytteistä. Vesihal- lituksen monistesarja35. Helsinki. 40p.

SELOSTUS

Suomen happamien sulfaattimaiden kansainvälinen luokittelu

Markku Yli-Halla

Maatalouden tutkimuskeskus

Suomessa luokitellaan happamiksi sulfaattimaiksi sellaiset maat,joissa kuivaamattomasta näytteestä mitattumaaprofiilin minimi-pHonalle5 jamaanha- petus-pelkistyspotentiaali ensin nouseejasittenlas- kee mentäessä maaprofiilissa alaspäin. Kansainväli- siä maaperänluokitusjärjestelmiä ovatFAOn/Unes- conjärjestelmä ja Yhdysvalloissa kehitetty SoilTax- onomy-järjestelmä. Jottamaaolisi sulfaattimaa, sen pH:n on oltava Soil Taxonomy-järjestelmässä alle 4,0jaFAOn/Unescon järjestelmässäalle 3,5. Vaih- toehtoisestipelkistyneessämaassa onoltavaniin pal- jonsulfidia, että hapettuvan maanpH laskeeallee.m.

raja-arvojen. Luokittelurajojen tarkoituksena on,että (happamiksi) sulfaattimaiksi nimettäisiin vain sellai-

siämaita, joissaontai joissavoi kehittyä runsaasti happamuutta.Tällaiset maat voivat tuottaaympäris- töönsämerkittäväähappamoittavaakuormitusta.

Tässä tutkimuksessaLimingasta, Ylistarosta ja Laitilasta otettuja happamia sulfaattimaita luokitel- tiin kansainvälisten kriteerien mukaan. Maaprofii- lien tutkimus osoitti, että maamme länsirannikolla esiintyy yleisestiSoilTaxononomy -järjestelmän Ty- pic Sulfaquepts- ja Sulfic Cryaquepts- luokkiin ja FAOn/Unescon luokituksen ThionicGleysols- luok- kiin kuuluvia viljelymaita. Sellaiset Suomessa hap- pamiksi sulfaattimaiksinimitetyt maat,joiden pH on 4-5,eivät kansainvälisten kriteerien mukaan kuiten- kaan olehappamia sulfaattimaita.

Viittaukset

LIITTYVÄT TIEDOSTOT

Jos valaisimet sijoitetaan hihnan yläpuolelle, ne eivät yleensä valaise kuljettimen alustaa riittävästi, jolloin esimerkiksi karisteen poisto hankaloituu.. Hihnan

Vuonna 1996 oli ONTIKAan kirjautunut Jyväskylässä sekä Jyväskylän maalaiskunnassa yhteensä 40 rakennuspaloa, joihin oli osallistunut 151 palo- ja pelastustoimen operatii-

Tornin värähtelyt ovat kasvaneet jäätyneessä tilanteessa sekä ominaistaajuudella että 1P- taajuudella erittäin voimakkaiksi 1P muutos aiheutunee roottorin massaepätasapainosta,

Työn merkityksellisyyden rakentamista ohjaa moraalinen kehys; se auttaa ihmistä valitsemaan asioita, joihin hän sitoutuu. Yksilön moraaliseen kehyk- seen voi kytkeytyä

Vaikka tuloksissa korostuivat inter- ventiot ja kätilöt synnytyspelon lievittä- misen keinoina, myös läheisten tarjo- amalla tuella oli suuri merkitys äideille. Erityisesti

Relationships between the landforms and soils in the Jokioinen landscape according to Soil Taxonomy (Soil Survey Staff 1998), FAO-Unesco system (FAO 1988) and Word Reference Base

Classification of the investigated pedons according to Soil Taxonomy (Soil Survey Staff 1998), FAO-Unesco system (FAO 1988) and Word Reference Base for Soil Resources (WRB) system

The direction of the change with time varied. For the surface samples of the P 62, a slight decrease in pH I [ 0 values was noted with increasing period of contact from 2 to 24