• Ei tuloksia

Devinder S. Sodhi

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Devinder S. Sodhi"

Copied!
40
0
0

Kokoteksti

(1)

CRUSHING FAILURE DURING ICE-STRUCTURE INTERACTION

Devinder S. Sodhi

U. S.Army Corps of Engineers

Cold Regions Research and Engineering Laboratory Hanover, NH, USA

Devinder.S.Sodhi@erdc.usace.army.mil or

dsodhi@crrel.usace.army.mil

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

Estimation of Ice Failure Forces

• Analytical methods

• Small-scale and medium-scale tests

• Full-scale measurements

• We need to follow all three approaches to

understand the ice failure processes and to gain

confidence in our estimation

(11)

No movement

Open water

Mixed modes

Crushing Creep Sliding-glancing

Floating loose floes Misc. failure modes

1% 10%

15%

39%

15%

6%

9%

1%

Ice rubble interaction4%

(12)

Pressure-Area Curve

(13)

Saeki and Ozaki

(1980)

(14)

Joensuu & Riska (1989)

Tuhkuri (1995, 1996)

(15)

Ice Crushing: Medium-scale Tests

• Field tests near Abashiri (sponsored by JOIA)

• Data from tactile sensors

• No intermittent crushing (Rigid structure)

• Ductile-to-brittle transition speed between 0.3

and 3 mm s

–1

(16)
(17)
(18)

Setup for Edge-Indentation Test

(19)

Tactile Pressure Sensor

Width = 100 or 146 mm

(20)

Crushing Failure Map Edge Indentation

Indentation Speed

Low………..High Transition Speed

Structures:

Rigid Compliant

Transition Speeds

Ductile Brittle

Ductile Intermittent Crushing (Ductile and Brittle)

Brittle

(21)

Ductile Deformation: Force and Contact Ratio

Indentation rate = 0.33 mm s

-1

0 20 40 60 80

Tim e (s)

0 5 10 15 20

Total Force (kN)

0.0 0.2 0.4 0.6 0.8 1.0

Contact Area Ratio

Test 10

Load Cell Data Tactile Sensor Data

(22)

Ductile Deformation: indentation speed = 0.33 mm s

-1

(23)

Ductile Deformation: Pressure Data

Indentation rate = 0.33 mm s

-1

MPa

0 1 2 3 4 5 6 7 8 9 10 11 12

Interfacial Pressure (MPa)

0 40 80 120

Minimum: 0.0 MPa Mean: 6.9 MPa Median: 7.7 MPa Maximum:11.5 MPa Std. Dev.: 2.7 MPa

(24)

Brittle Failure: Force and Contact Area Indentation rate = 502 mm s

-1

3 5 7 9 1 1

T im e (s )

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

Total Force (kN)

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

Contact Area Ratio

T e s t 9 3

L o a d C e ll D a ta

T a c tile S e n s o r D a ta

(25)

Brittle Crushing: indentation speed 502 mm s

-1

(26)

Brittle Failure: Pressure Data

MPa

0 1 2 3 4 5 6 7 8 9 10 11 12

Interfacial Pressure (MPa)

0 100 200 300

Minimum: 0.0 MPa Mean: 1.6 MPa Median: 1.1 MPa Maximum: 6.5 MPa Std. Dev.: 1.5 MPa

(27)

Dynamic Ice-Structure interaction

0 5 10 15 20 25

Time (s)

0 5 10 15 20 25 30

Total Force (kN)

-5 0 5 10 15

Structural Deflection (mm)

Test 26

0 5 10 15 20 25

Time (s)

0 5 10 15 20 25 30 35

Total Force (kN)

-5 0 5 10 15 20 25 30

Structural Deflection (mm)

Test 27

Structural Stiffness = 2.45 MN m-1 Indentation speed = 37.1 mm s-1

Structural Stiffness = 1.12 MN m-1 Indentation speed = 36.3 mm s-1

(28)

Dynamic Ice-Structure Interaction

14.2 14.5 14.8 15.1

Time (s)

740 760 780 800 820

Carriage Position (mm)

740 760 780 800 820

Indentor Position (mm)

Indentor

Test 88

Carriage

14.2 14.5 14.8 15.1

Time (s)

0 5 10 15 20

Total Force (kN)

0.0 0.2 0.4 0.6 0.8 1.0

Contact Area Ratio

Load Cell Data Tactile Sensor Data

Indentation rate

= 54 mm s-1

(29)

Dynamic Ice-Structure Interaction

Indentation Speed= 54 mm s

-1

(30)

Loading Phase: Pressure Data

MPa

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Interfacial Pressure (MPa)

0 20 40 60 80

100 Minimum: 0.0 MPa

Mean: 5.1 MPa Median: 4.5 MPa Maximum:14.1 MPa Std. Dev.: 4.1 MPa

(31)

Extrusion Phase:Pressure Data

MPa 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Interfacial Pressure (MPa)

0 50 100 150 200 250

Minimum: 0.0 MPa Mean: 1.9 MPa Median: 1.2 MPa Maximum: 9.9 MPa Std. Dev.: 2.1 MPa

(32)

Correlation Length

0 10 20 30 40 50

Distance X (mm)

0.0 0.2 0.4 0.6 0.8 1.0

Correlation Coefficient

exp[-x/(4 mm)]

Test 93 Test 10

(33)

Ice Crushing: Edge Indentation

f(x, t) = ∫ p(x, y, t) dy (force per unit area at a point on the structure)

• Non-simultaneous failure of ice: g(t)=∫ f(x, t) dx

Average local force per unit width µf(t) Standard deviation of local force σf(t) Correlation coefficient: exp(-x /L)

• Average global force: µg(t)=w µf(t)

• Standard deviation: σg(t)2= 2L σf(t)2[w-L{1–exp(–w/L)}]

Fmax= µg(t) + 3 σg(t)

pmax= Fmax/(wh)

(34)

Aspect Ratio Effect

0 2 4 6 8 10 12 14 16 18 20

Aspect Ratio w/h

0 1 2 3 4 5 6 7

Relative Pressure Ratio

Coefficient of variation = 0.5 Coefficient of variation = 1.0 Coefficient of variation = 2.0

L/h = 1

0 2 4 6 8 10 12 14 16 18 20

Aspect Ratio w/h

0 1 2 3 4 5 6 7

Relative Pressure Ratio

Coefficient of variation = 0.5 Coefficient of variation = 1.0 Coefficient of variation = 2.0

L/h= 0.1

(35)

Comparison: small-scale & full-scale

(36)

Data from Full-Sale Measurements

(37)

Data from Full-Sale Measurements

(38)

Data from Small-Scale Tests

0 2 4 6 8 10 12 14 16 18 20

Aspect Ratio (w/h)

0 1 2 3 4 5 6

Maximum Effective Pressure (MPa) Present study

150-mm-wide indentor (Sodhi 1998) 250-mm-wide indentor (Sodhi 1998) 350-mm-wide indentor (Sodhi 1998) Indentation rate > 100 mm s-1

(39)

0.01 0.02 0.03 0.04 0.05 0.07 0.10 0.20 0.30 0.40 0.50 0.70 1.00

Ice Thickness (m)

0.1 1.0 10.0

0.2 0.3 0.4 0.5 0.60.7 0.8 2.0 3.0 4.0 5.0 6.07.0 8.0

Maximum Effective Pressure (MPa)

Molikpaq data: ice speed >= 100 mm/s (Wright and Timco 1994) Small-scale data: continuous brittle crushing (Sodhi 2000)

Small-scale data: 3-segment indentor (Sodhi 1998a) Small-scale data: 5-segment indentor (Sodhi 1998a) Small-scale data: 7-segment indentor (Sodhi 1998a)

Medium-scale data: JOIA Indentation Tests ( speed 3-30 mm/s)

Comparison of Small-Scale and Full-Scale Data

(40)

Summary

Crushing Processes during Edge Indentation

•Ductile deformation at low indentation rate - high peff

•Brittle failure at high indentation rate - low peff

•Sharp transition between these modes for rigid structures

•Ductile and brittle crushing for compliant structures

•Statistical approach to explain aspect ratio effect

•Derivation of local-pressure-to-global-pressure ratio

Wall indentation is mechanically similar, but geometrically different, to edge indentation

There is speed effect, resulting in ductile and brittle crushing, but there is no size effect

Viittaukset

LIITTYVÄT TIEDOSTOT

CS as a paradigm of ‘planned change’ means considering both the decisions regarding the change content and the change process together in the same change-strategic planning

The present study have examined that there is no mediating effect on organizational politics and job stress due to job satisfaction.The literature review revealed that there

It is that all we know concerning the Judaism that the rabbis take for granted in a long sequence of basic writings concerns diverse documents, specific propositions and

Here we have the origin of the following misguided opinions: “there is no difference between clear cases and less-than-clear cases”, “there is no difference between the

Onko tulkittava niin, että kun Myllyntaus ja Hjerppe eivät kommentoineet millään tavalla artikkelini rakennetta edes alakohtien osalta, he ovat kuitenkin

On the other hand, public concerns in Russia similar to those in Ukraine – socio-economic difficulties – do not provide the Kremlin with many opportunities to use Donbas

Keski-Suomessa Konginkankaalla syntyneen taiteilijan metalliveistoksia on esillä Jyväskylän taidemuseossa ja koruja sekä lasiveistoksia Suomen käsityön

The bottom line of this thesis is that there is no one way of producing music, but there are approaches and methods that can help with most projects. Every decision,