• Ei tuloksia

Primary hand motor representation areas in healthy children, preadolescents, adolescents, and adults

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Primary hand motor representation areas in healthy children, preadolescents, adolescents, and adults"

Copied!
15
0
0

Kokoteksti

(1)

UEF//eRepository

DSpace https://erepo.uef.fi

Rinnakkaistallenteet Luonnontieteiden ja metsätieteiden tiedekunta

2021

Primary hand motor representation areas in healthy children,

preadolescents, adolescents, and adults

Säisänen, Laura

Elsevier BV

Tieteelliset aikakauslehtiartikkelit

©2021 The Authors

CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.neuroimage.2020.117702

https://erepo.uef.fi/handle/123456789/24191

Downloaded from University of Eastern Finland's eRepository

(2)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Primary hand motor representation areas in healthy children, preadolescents, adolescents, and adults

Laura Säisänen

a,b,c,

, Mervi Könönen

a,c,d

, Eini Niskanen

c

, Timo Lakka

e,f

, Niina Lintu

e

, Ritva Vanninen

b,d

, Petro Julkunen

a,c

, Sara Määttä

a

aDepartment of Clinical Neurophysiology, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Kuopio, Finland

bInstitute of Clinical Medicine, University of Eastern Finland, Finland

cDepartment of Applied Physics, University of Eastern Finland, Kuopio, Finland

dDepartment of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland

eInstitute of Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Finland

fDepartment of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland

a r t i c le i n f o

Keywords:

Transcranial magnetic stimulation Neuronavigation

Human physiologic maturation Development

Motor mapping Overlap

a b s t r a ct

Thedevelopmentoftheorganizationofthemotorrepresentationareasinchildrenandadolescentsisnotwell- known.Thiscross-sectionalstudyaimedtoprovideanunderstandingforthedevelopmentofthefunctional motorareasoftheupperextremitymusclesbystudyinghealthyright-handedchildren(6–9years,n=10), preadolescents(10–12years,n=13),adolescents(15–17years,n=12),andadults(22–34years,n=12).

Theoptimalrepresentationsiteandrestingmotorthreshold(rMT)fortheabductorpollicisbrevis(APB)were assessedinbothhemispheresusingnavigatedtranscranialmagneticstimulation(nTMS).Motormappingwas performedat110%oftherMTwhilerecordingtheEMGofsixupperlimbmusclesinthehandandforearm.

Theassociationbetweenthemotormapandmanualdexterity(boxandblocktest,BBT)wasexamined.The mappingwaswell-toleratedandfeasibleinallbuttheyoungestparticipantwhoserMTexceededthemaximum stimulatoroutput.Thecenters-of-gravity(CoG)forindividualmuscleswerescatteredtothegreatestextentinthe groupofpreadolescentsandcenteredandbecamemorefocusedwithage.Inpreadolescents,theCoGsintheleft hemispherewerelocatedmorelaterally,andtheyshiftedmediallywithage.Theproportionofhandcomparedto armrepresentationincreasedwithage(p=0.001);intherighthemisphere,thiswasassociatedwithgreaterfine motorability.Similarly,therewaslessoverlapbetweenhandandforearmmusclesrepresentationsinchildren comparedtoadults(p<0.001).Therewasaposterior-anteriorshiftintheAPBhotspotcoordinatewithage, andtheAPBcoordinateinthelefthemisphereexhibitedalateraltomedialshiftwithagefromadolescenceto adulthood(p=0.006).Ourresultscontributetotheelucidationofthedevelopmentalcourseintheorganization ofthemotorcortexanditsassociationswithfinemotorskills.ItwasshownthatnTMSmotormappinginrelaxed musclesisfeasibleindevelopmentalstudiesinchildrenolderthansevenyearsofage.

Abbreviations

APB abductorpollicisbrevis ADM adductordigitiminimi BB bicepsbrachii BBT Boxandblocktest CoG Centerofgravity CST corticospinaltract ECR extensorcarpiradialis FCR flexorcarpiradialis FDI firstdorsalinterosseus

fMRI functionalmagneticresonanceimaging

Someoftheseresultshavebeenpresentedinabstractformpreviously.

Correspondingauthorat:DepartmentofClinicalNeurophysiology,KuopioUniversityHospital,P.O.Box100,70029KYS,Kuopio,Finland.

E-mailaddress:laura.saisanen@kuh.fi(L.Säisänen).

MEG magnetoencephalography MEP motorevokedpotential MRI magneticresonanceimaging M1 primarymotorarea MSO maximumstimulatoroutput nTMS navigatedTMS

rMT restingmotorthreshold SCD scalptocortexdistance SMA supplementarymotorarea S1 primarysensoryarea

https://doi.org/10.1016/j.neuroimage.2020.117702

Received27August2020;Receivedinrevisedform16December2020;Accepted19December2020 Availableonline30December2020

1053-8119/© 2021TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(3)

1. Introduction

Thecorticalmotorareas includetheprimary motorcortex(M1), theregionresponsiblefortheexecutionofmovementanditsconcrete aspects,aswellaspremotorareasthatprovidecognitive,sensory,or motivationalinputsformotorbehavior(comprehensivelyreviewedby PicardandStrick,2001).Thesensorycortexistightlyconnectedtothe motorcortex(Eidelberg1969;Nudoetal.,1995;Teraoetal.,1995), andtogetherwithpremotor cortex,they areconsideredasthemain executiveloci forsimple voluntarymovements (Gerloff et al., 1998; Wittetal.,2008).Thereisbothelectrophysiologicalandfunctionalcon- nectivitybetweentheM1andpremotorareasaswellassupplementary motorareas(SMA),parietalcortexandcerebellum(Wesseletal.,1997; Akkaletal.,2007;Narayanaetal.,2012;Genonetal.,2017).Connectiv- itystudieshaverevealedthatdorsalpremotorareasconstituteamosaic withseveralfunctionssuchasmotorlearning,imageryandplanningof motortasks,andactionformulation,whichisrelatedtohandprefer- ence(Legaetal.,2020).Thisinterconnectivityisthoughttoprovidethe flexibilitynecessarytomodifytheexistingnetworktoaccommodatea behavioralchange(SanesandDonoghue2000).

Theprimarysomatosensoryandmotorcorticesaresomatotopically organized,suchthatspecificbodypartsarerepresentedseparatelyand adjacenttootherbodyparts,resultinginabodymap(PenfieldandBol- drey1937;Schott1993;Plowetal.,2010;CardandGharbawie2020).

Large-scalesomatomotororganizationwithtopographicscaffoldingisa fundamentalprincipleofearlydevelopment.Thisphenomenonises- tablishedprenatally andprovidestheprotoarchitecture of theentire brain. Itboth directsand constrainsexperience-drivenmodifications withchangesinconnectivity(Dall’Orsoetal.,2018;Arcaroetal.,2019).

Therelativeposition,distance,andoverlapbetweenbody-partrepresen- tationsconstituteasomatotopiclayoutthatdiffersinthedifferentter- minalsofthesensorimotornetwork(Wassermannetal.,1992).Somato- topyisalsofoundinthecerebellarcorticesandputamen(Hahamyand Makin 2019). Functional somatotopy is a balance between discrete peaksofindividualmuscles,theirdistributionaswellasawithin-limb overlapofrepresentations (Schabrunetal., 2015).However,theex- actsomatotopy is also questionedandchallenged with actionmaps (Graziano 2016).There is a considerableoverlap between thehand andforearmterritories in healthyindividuals (Marconiet al., 2007; Plowetal.,2010),potentiallyprovidingopportunitiesforcoordinated movementsandefficientsynergies,whilethesomatotopicdistinctive- nessofcentersofwithin-limbrepresentationsmaybeinvolvedinen- suringfinecontrol.Thepresenceofmultipleareasofhighexcitability (peaksinmaps)orsomatotopicallydiscretecentersisthoughttoreflect thepotentialforsynergistic,intermuscularcoordinationandcomplex movementstrategies,andconversely,itisimportantforfinelyindivid- uatedmovement(Teetal.,2017).

Handedness is one behavioral trait that affects somatotopy (Nudo et al., 1992; Nicolini et al., 2019) providing clues to the asymmetrical organization of the human brain (Toga and Thomp- son2003; Kong etal., 2018). Theneuralbasis andtimingof hemi- sphericlateralizationduringdevelopmentarefarfrombeingfullyun- derstood(Wilsonetal.,2010;DennisandThompson2013;Cochet2016; Konget al., 2018).Inadditiontothe primaryandsecondary motor andsensoryareas(Cochet2016),astudyusingresting-statefunctional magneticresonanceimaginganddiffusiontractographycombinedwith connectivity-basedparcellationdetectedasymmetryintheorganization, functionsandconnectivitybetweenhemispheresinthedorsalpremotor cortices(Genonetal.,2017;Genonetal.,2018).Aneurodevelopmen- talTMSstudyhasrevealedadecreaseinasymmetrywithage,favoring earliermaturationofthedominanthemisphere(Garveyetal.,2003).In adults,trendstowardsalargerrepresentation inthedominanthemi- spherehave beendescribed in most publishedstudies(Triggset al., 1999;Coppietal.,2014;Chieffoetal.,2016),possiblyrelatedtobet- terdexterity,whereasinbothpreadolescentsandadolescents,atrend

towardareducedmotormapwasobservedfortheleft,dominanthemi- sphere(Grabetal.,2018).

Neuromotorfunctionplaysanessentialroleinnormalcognitivede- velopmentandisfrequentlyabnormalinchildrenwithdevelopmental disabilities.Noticeablegainsinmotorfunctionsaremadethroughout theearlyschoolyears;thefine-tuningandcontinuedimprovementof motorskills,reflectedasbetterqualityandspeedofmotormovements, occurupuntiltheageof30years(Fietzeketal.,2000).Themostdy- namicperiodofmotorperformancedevelopmentendsat10to12years ofage(Fietzeketal.,2000).Instructuralterms,corticalthicknessinM1 attainsitspeakattheageofaboutnineyears,followedbytheSMA(~10 years)andmostofthefrontalpole(Shawetal.,2008).Thereafter,the corticalthicknessstartstotaper-off,andthisprocessasymptotesaround 14yearsofage(Vandekaretal.,2015).However,thecorticospinaltract (CST)reachesitsfullymaturestateearlierthanotherwhitemattertracts (DennisandThompson 2013).TheCSTexhibitsa leftwardasymme- try;itsmaturationrevealsdifferencesbetweenthesexes,buttheredoes notseemtobeanyrelationshiptoage-relatedchangesinmanualskills (Herveetal.,2009).

Themotormapscanbeassumedtobefundamentallythesamein childrenandadults,butlittleisknownregardinghowlocalnetwork propertieswithinM1evolveduringmaturationandhowtheseareas- sociatedwithconcomitantchangesinthemotorrepertoire.Thereare somekeyfindingsemergingfromanimalmodelsontheuse-dependent mapplasticityrelatedtothelearningofmotorskills(Nudoetal.,1996; Kleimetal.,1998).Ithasbeensuggestedthattheemergenceoffinemo- torcontrolisassociatedwitharelativebroadeningofconnectivitybe- tweenfunctionallydiversecorticalmotorneuronsandchangesinsynap- ticpropertiesthatcouldenabletheemergenceofsmallerindependent networks(Bianeetal.,2015;Arcaroetal.,2019).However,thispro- posalisatoddswithotherevidencefromanimal experimentswhich indicatethattheverybroadmotorconnectivityanddistributionsinthe fetusandnewbornappeartobetightlyrefinedduringearlydevelop- ment(probablyduringthefirst2–3years(Martin2005).Neuroplastic changesduetophysicalpracticeormentalrehearsalmayleadtoeithera reductionorexpansionofcorticalrepresentationsofactivelyusedmus- cles(Schieber2001;Kleimetal.,2004;Adkinsetal.2006;Vaaltoetal., 2013)ortosomekindofalteredoverlap(Tycetal.,2005).

Inhumans,thefunctionalmotormapandits developmentalplas- ticitycanbeassessedbyseveralnon-invasivebrainmappingmethods (Narayanaetal.,2015a).Neuronavigatedtranscranialmagneticstim- ulation (nTMS)isonesuchformofadirectmethod.TMShasanev- ident potential with both diagnostic andtherapeutic applications in pediatric neuropathologies (Frye et al.,2008; Hameedet al., 2017), suchasforassessingplasticityinprenatal,perinatal,orpediatricstroke (Waltheretal.,2009;Staudt2010;Kirtonetal.,2016).ThoughnTMS mapping hasprovedadvantageous intheclinicalexaminationof the presurgicalevaluationoftheeloquentareasinbothchildrenandadults (Säisänen et al., 2010; Vitikainen etal., 2013; Kaye andRotenberg 2017),themotormapshavenotbeen determinedatdifferent stages ofdevelopmentinthehealthybrain.Developmentalstudiesusingother methodshaveshownhigheractivationofthebilateralsensorimotorcor- tex, parietalareas,theSMAandthecerebelluminadultsincompar- isontochildrenusingfunctionalmagnetic resonanceimaging(fMRI) (Mall et al., 2005). On the other hand, a magnetoencephalography (MEG)studythat examinedthegeneratorsandareasfor motorcon- trolintypicallydevelopingchildrenandadolescents,foundevidence fortheinvolvementofSMAandcerebellarcorticesinadditiontoM1 (Wilsonetal.,2010).

Theaimofthisstudywastoassessthefunctionalcorticalrepresen- tationofupperextremitymusclesatrestinhealthyright-handedindi- vidualsatdifferentstagesofdevelopmentfromschoolagetoadulthood byusing nTMS,especiallyduringthecriticalperiodforthedevelop- mentof finemotorskillsi.e. preadolescence.Themotormapresults werecorrelatedwithmanualdexterity.Basedontheresultsfromprevi-

(4)

Table1

Genderandage,handedness,scalp-to-cortexdistanceandmanualdexterityscores(numberofblocksmovedinoneminute),restingmotorthresholdsas maximumstimulatoroutput(%).Mean±SD(range).Significanceindicatesdifferencesbetweenagegroups(ANOVA,post-hocSIDAK).Significantasymmetrical differenceswithinagegroupareindicatedwithboldfont(pairedt-test).

Children( n = 10) Preadolescents( n = 13) Adolescents( n = 12) Adults( n = 12) Significance

Gender ( male/female ) 5 / 5 7 / 6 6 / 6 6 /6

Age (years) 7.7 ± 0.4

(6.8–8.3)

10.9 ± 0.4 (10.2–11.8)

15.8 ± 0.8 (14.3–17.0)

28.0 ± 3.8 (22.3–33.7)

F = 232.07 p < 0.001 a,b,c,d,e

Edinburgh handedness 31.1 ± 8.5

(11–40)

32.7 ± 5.7 (26–36) [ n = 3 ]

28 ± 5.2 (23–40)

29.0 ± 7.1 (17–40)

F = 0.401 p = 0.753 Scalp-to-cortex distance

(mm)

Left hemisphere 7.89 ± 1.37 (5.3–9.7)

9.41 ± 0.82 (7.3 –10.3)

12.46 ± 1.85 (9.1 –14.6)

15.23 ± 2.50 (11 –19.5)

F = 34.47 p < 0.001 b,c,d,e Right hemisphere 7.44 ± 1.26

(5.1–8.8) 8.28 ± 1.08

(6.4 –10.0) 10.93 ± 1.66

(7.3 –13.4) 12.78 ± 2.57

(9.0 –16.7) F = 20.95 p < 0.001 b,c,d Box and block test (score) Left hand 51 ± 8

(43–66)

65 ± 6 (56–75)

73 ± 11 (53 –87)

83 ± 8 (71–105)

F = 27.67 p < 0.001 a,c,d,e Right hand 55 ± 6

(46–65)

65 ± 6 (55–75)

77 ± 14 (56 –94)

84 ± 7 (75–98)

F = 23.37 p < 0.001 a,b,c,d Resting motor threshold (%) Left hemisphere 67 ± 17

(42 – 96) 52 ± 12

(31 – 75) 42 ± 8

(30 – 54) 41 ± 7

(32 – 54) F = 12.42 p < 0.001 a,b,c Right hemisphere 68 ± 11

(55 – 94)

53 ± 11 (30 – 73)

40 ± 8 (25 – 56)

40 ± 6 (32 – 49)

F = 21.15 p < 0.001 a,b,c,d,e achildrenandpreadolescents,.

b childrenandadolescents,.

cchildrenandadults,.

d preadolescentsandadolescents,.

epreadolescentsandadults,fadolescentsandadults.

ousdevelopmentalandanimalstudiesonmotorlearningandplasticity, wehypothesizedthattopographicmapswouldbeessentiallythesame betweenchildrenandadultsthough therelativesizeofmotorrepre- sentationareasmightchange,andinadditionthattheoverlapbetween handandarmrepresentationmightincreasewithdevelopment.Further- more,themapmeasureswerecorrelatedwiththeimprovementsinfine motorabilities.

2. Materialsandmethods 2.1. Participants

ThisstudywascarriedoutinthepremisesofKuopioUniversityHos- pital,intheDepartmentsofClinicalRadiologyandClinicalNeurophysi- ology,andispartofanearlierstudy(Määttä etal.,2017;Säisänenetal., 2018).Thirty-fivehealthyright-handedparticipants(range7–17years), withthegendersuniformlydistributed,werestudied(demographicsin Table1)andcomparedwith12youngadults(22–33yearsold).The participantsintheyoungestagegroupswererecruitedfromageneral populationsampleofpredominantlynormal-weightchildrenfromthe cityofKuopio.Adolescentswererecruitedfrompupilsinthe8thgrade fromthenearestcomprehensiveschool.Oneambidextrousboywascon- sideredinthisstudyasright-handed.Theexclusioncriteriawereneuro- logicalorpsychiatricdisorders,previouscentralnervoussystem(CNS) infectionortrauma,medicationswithknownCNSeffects,oranycon- traindicationofTMS(Rossietal.,2009).Allparticipantswereinformed aboutthenatureofthestudy.Afterhavingreceivedadetaileddescrip- tionoftheprocedure,theparticipantsprovidedwritteninformedcon- sent.Consentwasalsoprovidedfromtheguardianinthecaseofapar- ticipantbeingunder15yearsofage.Thestudywasapprovedbythe ResearchEthicsCommitteeof theHospitalDistrictof NorthernSavo (48/2010).Allproceduresperformedwereinaccordancewiththeeth- icalstandardsoftheinstitutionaland/ornationalresearchcommittee (ethicalpermission48/2010).

2.2. Motortask

TheBoxandBlockTest(BBT)wasusedtoassessmotorspeedand skill(Mathiowetzetal.,1985).Thistaskrequirestheparticipanttomove

asmanyblocksaspossiblewithin60sfromonesideofaboxtothe other.Eachhandwasassessedseparately,beginningwiththedominant hand.

2.3. MRimaging

Subjectswerescannedwitha3.0TMRI-scanner(PhilipsAchieva TX;PhilipsHealthcare,Eindhoven,TheNetherlands).Structuralthree- dimensional T1-weightedMR-imageswereacquired(TR8.07ms,TE 3.7ms,flipangle8°,1×1×1mm3resolution)forTMSnavigation.An experiencedneuroradiologistscreenedallthestructuralMRIsforfocal changesbeforenTMSexamination.Scalp-to-cortexdistance(SCD)was assessedinmmtothedepthofgraymattersurfaceusingthenavigation software(Määttä etal.,2017).

2.4. NavigatedTMS

nTMS was performed with an eXimia stimulator and a biphasic figure-of-eight coilcombinedwitha navigationsystem(3.2 research version,NexstimPlc.,Helsinki,Finland)inbothhemispheresinaran- domizedorder.Amorethoroughdescriptionofthestimulatorsetupis providedin ourpreviouspaper(Säisänen etal.,2018).TMS-induced motor evokedpotentials(MEPs) wererecordedusing disposableAg- AgCl surfaceelectrodes placedontheabductorpollicisbrevis(APB), abductordigitiminimi(ADM),firstdorsalinterosseus(FDI),extensor carpiradialis(ECR),flexorcarpiradialis(FCR),andbicepsbrachii(BB) using abelly-tendon montage.Throughoutthemeasurement, muscle activitywasmonitoredon-lineandrecordedbystimulus-lockedEMG (NexstimPlc.,Helsinki,Finland).First,theoptimalcorticalrepresenta- tionsite(“hotspot”)oftheAPBwasdetermined(Säisänenetal.,2008).

ThehotspotwasthestimulationsitewheretheMEPsofgreatestam- plitudewereelicitedrepeatedly.Atthatsite,byusingtheoptimalcoil orientation,theindividualrestingMT(rMT) wasdeterminedusinga thresholdhuntingparadigmTMSMotorThresholdAssessmentTool2.0 (Awiszus2003;AwiszusandBorckardt2012) asapercentageof the maximumstimulator output(%-MSO).Mappingofmotorrepresenta- tionareaswasperformedatthestimulationintensityof110%ofrMT oftheAPBwiththeaidofagrid(size5×5mmpersquare)thatwas

(5)

Fig.1. AExample ofthe mappingat 110%

of rMT using the grid targeted around the hotspot.BExampleoftheresultingmap:white dotsare locationselicitingMEP response in anyupperlimbmuscle;graydotsarenegative sites.Thearrowshowsthehotspotwithelectric fieldorientation.Orangedashedlinesindicate thecentralsulcus.CEMGwasrecorded;run- ningonline(leftpanel)andTMS-triggeredre- sponsesindividuallyfortheAPB(uppermost), FDI,ADM,ECR,FCR,BB,andFDI(thelow- est).Stimulusisgivenatthemomentofthe reddashedline.APB=abductorpollicisbre- vis;ADM=adductordigitiminimi;ECR=ex- tensorcarpiradialis;FCR=flexorcarpiradi- alis;BB=bicepsbrachii;FDI=firstdorsalin- terosseus.

individuallycenteredtothehotspot.Onestimuluswasappliedperspot, extendeduntiltherewasarim ofstimulationsiteselicitingno more MEPs(Fig.1)(Säisänenetal.,2015).Thecoilorientationwasapproxi- mately45° tomidline,perpendiculartothenearestsulcus,thesoftware ensuringoptimaltilting.Theinterstimulusintervalwas3to5s.Thedu- rationofthewholemeasurementsession(includingtheexplanationof theprocedure,attachingtheelectrodes,performingtheco-registration etc.)wasapproximatelytwohours.Thecoarsemappingatthebegin- ningof thesessionandthefollowingMTdeterminationlastedabout twentyminutesperhemisphere.Thereafter,thedurationsofbilateral motormappingsessionsrangedfrom9to33min,themeanwas18min dependingonthesizeofthemapandthesubjects’abilitytoremain relaxed.Atolerabilityquestionnairewasadministeredimmediatelyfol- lowingthesession(SupplementaryTable1).

2.5. Dataanalysis

TheMEPswithamplitudesof>50μVinrelaxedmuscleswereac- ceptedasresponses(Rossinietal.,2015;Groppaetal.,2012).Therep- resentationareasforhand(APB,FDI,ADM)andarm(ECR,FCR,BB) werecalculatedforeachsubjectusingthesplineinterpolationmethod (Julkunen2014),andtheirratiowasstudied.Therelativeoverlap(%) wasdeterminedastheareawherestimulationelicitedaresponseinboth handandarmmusclesdividedbytheunionofthehandandarmmus- clerepresentationarea(i.e.thetotalarea,atleasteitherhandorarm producedaMEP),theso-calledJaccardindex.

TheCenters-of-Gravity(CoGs)(Wassermannetal.,1992)formotor representationofeachhandmuscleweredeterminedusingtheMRIco- ordinatespaceof theeXimiasoftwarethat utilizestheLAS(i.e.left, anterior,superior)coordinatesystem,whichhasanoriginintheright- posterior-inferiorcorneroftheimage.TheindividualCoGcoordinates

andMRIswerespatiallynormalizedtostandardspace(origininanterior commissure,xcoordinatepositivevaluesinright,ycoordinateforward positive,zcoordinateuppositive)usingtheSPM8-softwarerunningon Matlab7.4(TheMathworks,Natick,USA).Twotemplateswereused dependingonage.Thetemplateusedforchildrenandpreadolescents wascreatedwiththeTOMtoolboxonSPMusingtheNIHreferencedata (Wilkeetal.,2008).Foradolescentsandadults,thestandardMNItem- plateprovidedbySPMwasused.Todeterminethevariationbetweenthe CoGswithinthegroups,ellipsoidsofthe90%confidenceintervalwere fittedtotheclustersoftheindividualsitesbyestimatingthelengthsand directionsoftheellipsoidmainaxisbasedonchi-squaredistributionus- ingMatlab(Niskanenetal.,2010).

2.6. Statisticalanalysis

ThedifferencesinrMT,SCD,andBBTscoresacrosstheagegroups were analyzedwithANOVA andthe posthoc Sidaktest. Interhemi- sphericdifferencesinrMT,SCD,andBBTscoreswithintheagegroups wereevaluatedwiththepairedt-testsincethesevariableswerenormally distributed.Therepresentationextents,ratiosofareasandoverlap(not normallydistributed,Kolmogorov-Smirnov)weretestedwithunivariate generallinearmodelforeffectsof age,hemisphereandtheirinterac- tion.TheCoGsofthemuscle-specificcoordinateswereevaluatedusing thenonparametricKruskal-Wallis testandposthocpairwisecompar- isonswithBonferronicorrection,andinterhemisphericdifferenceswith Mann-WhitneyUtest.TheLevenetestwasusedtoevaluatedthevaria- tionwithinagegroupsinCoGoftheAPBanterior-posteriorycoordinate andtherelativeoverlapwithintheagegroups.Spearmancorrelation andpartialcorrelationsadjustedforageorBBTwereusedtotesttheas- sociationsbetweenthehand/armratios,overlap,motordexterity,and age.AssociationsanddifferenceswithP-values<0.05wereconsidered

(6)

Table2

HotspotlocationsoftheAPBineachagegroupshownaspercentage(%).

Children Preadolescents Adolescents Adults

Precentral gyrus 60 50 71 92

Central sulcus 40 38 29 0

Postcentral gyrus 0 12 0 0

Premotor area 0 0 0 8

statisticallysignificant.Thestatisticalanalyseswereperformedwiththe SPSSsoftware,Version22(IBMCorporation,Somers,NY,USA).

3. Results

3.1. Safetyandtolerability

TheTMSwaswelltoleratedbyallparticipantswithnosignificant sideeffects.Minorcomplaintswerereportedbysevenparticipantsi.e.

tiredness(n=4),irritationofthestimulatedsite(n=2),andexcess compressionfromthetrackerband(n=2).

3.2. Hotspotlocations

TheAPBhotspotswereusuallyfoundintheprecentralgyrus(68%) orinthecentralsulcus(27%)(Table2).Therewasaposterior-anterior shiftwithage;thelocationsinthecentralsulcusorposteriortothat locationweremorecommonintheyoungeragegroups,whereasadults’

APBhotspotswerefoundintheprecentralgyrus(Table2).Themost commonlocationwasthehandknob,morespecifically,itslateralcorner (representativeexamplesfromeachagegroupareshowninFig.1).SCD increasedwithage(F=20.9ontherighthemisphere,20.8ontheleft, p<0.001)(Table1).SCDexhibitedastatisticallysignificantasymmetry (longerdistance ontheleft,dominanthemisphere)in allagegroups otherthaninthechildren(Table1).

3.3. Motorthresholdsandfeasibility

TherMTsoftheAPBareshowninTable1,andtheindividualrMTs andfeasibilitytoperform motormappingintheyoungest agegroup aredisplayedinTable3.TherMTwastoohightobeassessedinthe youngestparticipantaged6.8years.Despiteusingthemaximumstim- ulatoroutput in one participant(G4), 106% and 108% of rMT was reachedandusedformappinginsteadoftheintendedstimulusintensity, andforthissubject,onlytheresultsforCoGsareincludedinthemotor mapgroupanalysis.ThisparticipantalsohadMEPsofhighamplitude intheECRduringmapping.Basedonthisfinding,weperformedanad- ditionalrMTestimationusingamethodof50μV-levelrMTfortheECR muscle(Julkunenetal.,2011)inchildrentoensurethattherMTsinthe ECRwerenotlowerthanintheAPB(p=0.582forright,p=0.969for lefthemisphere,pairedt-test)(Table3).Theinput-outputcurveshave beenassessedearlier(Säisänenetal.,2018).ThemeanrMTfortheAPB didnotdifferbetweenthehemispheres,butsomesubjects(equallydis- tributedinallagegroups)exhibitedasubstantialinterhemisphericdif- ferenceinrMT(lefthemisphere– righthemisphere)rangingfrom−18 to19%-MSO.

3.4. Handandarmrepresentationextents,theirratio,andoverlap

Themotorrepresentationswerelocated mainlyontheprecentral gyrusspreadingtoregionsbothanteriorandposteriortothatlocation, butnotextendingtotheSMA(Figs.2and3).Motormapresultsatin- dividuallevelareshowninFig.3.Apreadolescentsubjectistakenas anexample,andhermuscle-specificmapsshowninFig.3B.Fig.3A showsthemappedareasbilaterally,andinthelefthemispheretheloca- tionswereMEPswereelicitedinallsixrecordedmuscles.Thesamekind ofmaponmulti-jointresponsesisshownforanother(adult)subjectin

Fig.3C.ThemappingresultsatgrouplevelareshowninTable4.In children,thehand/armratiowasbelowoneandincreasedwithage,i.e.

childrendifferedsignificantlyfromadolescentsandadults(F=6.157, p=0.001)(Table4).Therelativeoverlapofthehandandarmrepre- sentationswaslessinchildrenthanintheotheragegroups(F=7.864, p<0.001)(Fig.4).

3.5. CoG

Themuscle-specificnormalizedCoG-coordinatevolumesareshown inFig.5.Whenvisuallyevaluated,the90%confidentialellipsoidwas anatomicallynarrowandorientedintheantero-posteriordirectionin children.Inpreadolescents,theCoGsusedforfittingweremorescat- teredresultinginalargerellipsoid.Thereaftertheellipsoiddecreased insizeandconcurrently,itsshapechangedfromacircleinadolescents tobeingoval-shapedinadultsasaresultoftheuniformlyclusteredCoG locations.Inoneadult,alloftheCoGswereinpremotorareas.

TheCoGcoordinatefortheAPB,themainmuscleofinterest,was separatelyexamined(Table5).Themedio-lateralx-coordinateexhib- itedanage-relatedeffect:thisCoGmovedinamedialdirectioninthe lefthemisphere(p=0.006,posthocpairwisetestwithBonferronicor- rection betweenpreadolescentsandadults).Intherighthemisphere, thex-coordinatemovedslightlyinthelateraldirection,butthischange was not statisticallysignificant (Table 5).All othermuscles showed asimilareffectofageinthelatero-medialdirectionin thelefthemi- sphere,withtheposthocevaluationhighlightingrevealingthediffer- encebetweenpreadolescentsandadults(SupplementaryTable2).No shiftwasfoundintherighthemisphere.Byusingtheabsolutevalues ofthecoordinates,wedetectedinterhemisphericdifferencesinadoles- centsandadults(Table5).TheCoGfortheAPBwasmoremedialinthe lefthemispherethanintherighthemisphereinadolescentsandadults, andmoreposteriorinthelefthemispherecomparedtotherightinado- lescents.

Theantero-posteriory-coordinateshowedatrendtowardsanante- riorshiftwithageintheAPBintheleft(p=0.076,Table5),anda statisticallysignificantdifferencefortheECRandBB(Supplementary Table2).Intherighthemisphere,onlytheBBrevealedthiskindofan- teriorshiftassociatedwithage(p=0.004).Itisnoteworthythatthere isextensivevariationintheanterior-posteriororientation,specifically inpreadolescentsandchildren(F(3,42)=5.803,p=0.002ontheright, non-significantonthelefthemisphere).Adolescentsexhibitedasymme- try,withthey-coordinateontheleftbeinglocatedinamoreposterior location(p=0.045).

3.6. Correlationsbetweenmanualdexterity,ageandthemotormap parameters

Manualdexterityimprovedwithage(p<0.001,Table1).Thedexter- ityoftherighthandwasstatisticallysignificantlybetterthanthatofthe leftinchildrenandadolescents(t=2.483,p=0.017).Thehand/arm ratiointherighthemispherecorrelatedpositivelywiththeBBTscore ofthecontralateralhand(rho=0.522,p<0.001);atrendwasfoundfor thelefthemisphere(Fig.6).Thiscorrelationintherighthemispherere- mainedwhenadjustedforage(r=0.346,p=0.020),butagenolonger correlatedwiththehand/armratiowhenadjustedfortheBBTscore.

TherelativeoverlapoftherighthemispherecorrelatedwiththeBBT scoreforthecontralateralhand(rho=0.500,p<0.001),butintheleft hemispherethiswasevidentonlyasatrend(Fig.6).Thecorrelation disappearedwhenadjustedforagebutremainedforoverlapandage whenadjustedfortheBBTscore(r=0.306,p=0.041).

4. Discussion

Thiscross-sectionalstudydescribesthecorticalmaturationandde- velopmentofhandmotorrepresentationareasandtheirintrinsicorgani- zationalprinciplesusingnTMSmappinginanagerangefromchildhood

(7)

Table3

Individualrestingmotorthresholds(rMT)ofabductorpollicisbrevis(APB)inthechildren.TherMTstoohighformappingat110%ofrMTareindicatedwith emboldenedtext.MappingwasperformedatthemaximumstimulatoroutputinG4,correspondingto106%and108%ofrMT.Mappingwasnotperformed forB5andonlyontherighthemisphereforG2.

Subject Age (years) Mapping rMTfor APB(%) Estimated rMT for ECR (%)

L

hemisphere

R hemisphere

L hemisphere R hemisphere

G1 7.7 Both hemispheres 42 55 42 NA

G2 7.9 R hemisphere 96 77 NA NA

G3 8.3 Both hemispheres 65 66 60 61

G4 7.8 Both hemispheres

at 100% MSO

92 94 NA NA

G5 7.4 Both hemispheres 64 60 60 54

B1 8.1 Both hemispheres 62 66 60 63

B2 7.3 Both hemispheres 59 62 60 59

B3 7.8 Both hemispheres 64 66 65 66

B4 7.7 Both hemispheres 61 70 56 NA

B5 6.8 no > 100 > 100 NA NA

B=boy,G=girl,ECR=extensorcarpiradialis,L=left,R=right,rMT=restingmotorthreshold.NA=notassessed.

Duringmapping,largeMEPswereelicitedinECRmusclesindicatingthattherMTofarmmuscleswasprobablylowerthanthatofAPB.

Fig. 2. Upper panel shows representative, qualitativeexamplesofCoGforeachmuscle.

Inchildren,theCoGsarescattered.Inanadult brain,theCoGsareclosetoeachotherinthe precentralgyrus,nearthelateralcornerofthe omega-shapedhandknob.Lowerpanelshows rawdataonindividualmapsineachagegroup.

RedincidatesMEPsinhand,blueinarmand purpleinboth.Thesubjectsinupperandlower panelarenotthesame,butrandomlychosen.

Fig.3.Themappingdataononepreadoles- cent. A All stimulated locations bilaterally.

Inthelefthemisphere thesiteswhereMEPs wereelicitedinallsixmusclesareindicated withbluesquares.ThesiteswhereMEPswere elicitedinanyofthemusclesareshownwith heatmap,white>1mV,yellow500–1000μV andred50–500μV.BMuscle-specificmaps.

CAsimilarmapshowingthemulti-jointre- sponses(MEPselicitedin allmuscles)foran adultsubject.

(8)

Table4

Motormappingresultsreportedasmean(standarddeviation)forhandandarmextentsandtheirratioandoverlapasabsoluteareaandaspercentage.

Significanceindicatesdifferencebetweenagegroups(generallinearmodel).Nointeractionwasfoundbetweenageandhemisphere.

Children Preadolescents Adolescents Adults Significance

Extent hand (cm 2) 6.83 (3.03) 6.90 (3.04) 8.26 (3.38) 8.62 (3.34) p = 0.158

Extent arm (cm 2) 10.18 (3.48) 7.68 (4.17) 7.75 (4.72) 7.90 (3.56) p = 0.195

Ratio hand/arm (-)

0.684 (0.24) 1.035 (0.43) 1.283 (0.59) 1.224 (0.48) F = 6.157

p = 0.001 b,c Overlap area

(cm 2) 5.86 (2.70) 6.32 (3.26) 6.61 (3.85) 6.74 (2.87) p = 0.857

Overlap (%) 0.47 (0.13) 0.63 (0.13) 0.61 (0.16) 0.69 (0.12) F = 7.864

p < 0.001 a,b,c achildrenandpreadolescents,

b childrenandadolescents,

cchildrenandadults.

Fig.4. AHand/armratioandBoverlapindifferentagegroups.

Fig. 5. Ellipsoids showing the locations of centers-of-gravity(CoGs)ofhandandarmmus- cleswith90%confidenceintervalinnormal- izedstandardbrainfromtwodifferentorien- tations.Thechildren’stemplatewasusedfor childrenandpreadolescents;theadulttemplate wasusedforadolescentsandadults.Inthetwo youngestagegroups,thevolumewasspread alsoposteriorlytothecentralsulcus.Thedots outsidethe adult ellipsoid (in the premotor area)werethoseofonemalesubject.Thesur- faceisthatintheborderbetweenthegrayand whitematter.Blackdotsandredellipsoidin- dicatesthehand,bluedotsandgreenellipsoid indicatesarmmuscles.

Table5

Normalizedcoordinates(inmm)forCoGoftheAPBpresentedasmean(standarddeviation).Originisinanteriorcommissure,xisthemedial-lateralorientation (leftbeingnegative)andyisanterior-posterior(negativeincreasingposteriorly).Significanceindicatesdifferencebetweenagegroups(Kruskal-Wallis,post- hocpairedtestwithBonferronicorrection).InterhemisphericdifferenceswereexaminedwithMann-WhitneyU,significantdifferenceswerefoundforxin adolescents(p=0.020),yinadolescents(p=0.045)andxinadults(p<0.001),showninboldfont.

Children Preadolescents Adolescents Adults Significance

x coordinate Left hemisphere 36.3 (2.4) 38.5 (5.4)

36.1 a (4.6)

32.7 c(2.8) p = 0.006 Right hemisphere 38.5

(2.4) 39.8

(4.9) 40.6

(4.2) 40.6 (4.2) p = 0.414

y coordinate Left hemisphere 12.6 (7.0) 17.1 (10.3)

14.9 b (3.9)

10.6 (4.2) p = 0.076 Right hemisphere 10.2 (8.4) 16.5

(8.3)

11.7 (3.2)

10.5 (3.4) p = 0.371 Thesignificance()isbetweenpreadolescentsandadults.

(9)

Rho=0.522, p <0.001 Rho=0.500, p <0.001

Rho=0.266, p =0.077 Rho= -0.233, p =0.128

Hand/arm le hemisphere Hand/arm right hemisphere Overlap right hemisphereOverlap le hemisphere

3

2

1

3

2

1

1.0

0.4 0.8

0.2 0.6

1.0

0.4 0.8

0.2 0.6

40 60 80 100

40 60 80 100

Children Preadolescents Adolescents Adults

BBT le hand

BBT right hand

BBT right hand BBT le hand

Fig.6. Significantcorrelationsbetweenhand/armrepresentationareasandoverlapwithmanualdexterityofthecontralateralhandwerefoundintherighthemi- sphere.Nosuchcorrelationswerefoundintheleft,dominanthemisphere.Colorsindicatedifferentagegroups.

toyoungadulthood.Bothanexpansionandtheextensivevariationin theCoGsoftheupperlimbmusclerepresentationswerefoundinchil- drenaged10—12years,which isthetimewindowwhenfinemotor abilitiesimprove.Thereafter,theCoGsofthemotorrepresentationsbe- camemoreconcentratedwithage.Inthelefthemisphere,theCoGswere locatedmorelaterallyinpreadolescentsandthenshiftedmediallywith age.Thehandandforearmmusclerepresentationratioincreasedwith development;intherighthemisphere,thisisassociatedwithgreaterfine motorability.Thehandandforearmmusclerepresentationsoverlapped lessinchildrencomparedtootheragegroups.

4.1. Hotspotlocation

Inadults,theAPBhotspot wasfoundin theexpectedlocationin theprecentralgyrusoranteriortothatlocation,usuallyinthelateral cornerofthehandknob(Ahdabetal.,2016;Reijonenetal.,2020a).

Our observationof thepremotor hotspot inone adult is notunique (Ahdab etal.,2016).Inchildren,thehotspot wasmostoftenlocated inthecentralsulcus,andtherewasaposteriortoanteriorshiftwith age.Wealsoobservedanunexpectedposteriortoanteriortrendwith age,similartothatoccurringin thelocationofthehotspot.Previous developmentalworkhasindicatedthatboththeCoGcalculatedbased onthemotormapsaswellasthehotspotarevaluableparameters,pro- vidingarobusttoolforestimatingthetargetedsite(Grabetal.,2018).

Intheirseminalmodelingwork,Foxandcolleaguesappliedacolumn- basedmodelandfoundthehotspotlocationinadultstobedeepinthe sulcus(Foxetal.,2004).Lateron,thislocationwasspecifiedtotheante- riorwallofthecentralsulcustowardthegyrallip,thoughsubsequently itwasclaimedthatseveralissuessuchasaxonbendingneededtobe considered(Gomez-Tamesetal.,2020).Therewasanexpectedeffectof

ageontheSCD,andtheusedsimplifiedsphericalEFmodel,insteadofa realisticheadmodel,mayhaveintroduceduncertaintiesintothemap- pingresult(Beauchampetal.,2011;Danneretal.,2012;Julkunenetal., 2012).

4.2. Anatomicalmaplocation

Anatomically, thehand motor representationswere foundin M1 aroundthehandknob,extendingslightlyfrontallytothepremotorar- eas.However,thisismainlyduetothespreadoftheelectricfieldand notaseparateconnectionfromtheremotepremotorarea(Teittietal., 2008).Inourstudy,acoilorientationofapproximately45° wasused in allsubjects. TheEF modelingstudyrevealedthat thepreferential coil orientationsareeitherperpendiculartothegyrusortoward the CoGorthehotspotonthetopofthegyriandfurthermore,coilorienta- tioncanbecrucialfortheaccuracyofmotormapping(Reijonenetal., 2020b).Thefunctionalmotormapswerenotextendedtonon-primary motorcorticessuchastheSMA,whichhasanimportantroleincom- plex movement (Shibasaki 2012). In practice, short bursts of high- frequency TMSstimulationareneededtotransientlydisturbthemo- tor functionwhenassessingtheeffectsontheSMA(Schrammetal., 2019).Activityin theSMA(andcerebellum)in additiontothecon- tralateralprecentralgyrushasbeenobservedinbrainsundergoingmat- urationamongchildrenaged8—15yearsusingasimplemotortaskin anMEG(Wilsonetal.,2010).AnfMRIstudyusingwriststimulation detectedlarge activationareasincludingtheSMAinpreterminfants (Dall’Orsoetal.,2018).Instead,anotherfMRIstudyrevealedlargerac- tivatedareasincludingtheSMAandcerebelluminadultsincomparison tochildren(Malletal.,2005).Notonlythetype(precisionvs.power grip)oftask(Ehrssonetal.,2000),butthemodalities(fMRIvs.TMSvs.

(10)

MEG)andfunctionalconnectivitynetworksdifferandtheresultsare notdirectlycomparabletootherpublishedreports(Wangetal.,2020; WeissLucasetal.2020).

4.3. Topographicspecificity,actionmapsandmotorprimitives

Whenexaminingtheindividualmapsineachagegroup,children’s mapsweremoresporadicordiverse,thoseofpreadolescentswerelo- catedpostcentrally,inadolescents,themapswerelarger,whereasin adults,theyweremuchmorefocusedandclusteredneartothehand knob. However, the individual variation in motor maps was exten- sive,andcaution isnecessarywheninterpreting ourresults.Our re- sultsofdiversemapsmaybe inlinewithahighlyinterestingbranch ofresearch thatquestionsthetopographicorganizationofthemotor cortex,andinsteadsuggestsfunctionallydistinctareas (actionmaps), that are based on coordinated effects on animal’s behavior, for re- view see (Graziano 2016). Complex motor primitives exhibit inter- speciesdifferences,butareconnectedtoethodologicallyrelevantbe- haviors(Desmurgetetal.,2014).Theresearchersweresurprisedtofind anonuniformrepresentationofsynergiesbyusingintracorticalmicros- timulation,wheremovementstendedtoconvergetowardparticularpos- tures(Overduinetal.,2012).These actionmaps,onein theparietal cortex,oneinthemotorcortexalsoshowconnectivitybetweenthem.

Theyarepartlyshapedbyexperience,andexhibitreorganizationand capabilityofdevelopingnewzones.However,itisstillunclearwhether theyarelargelyfixedafterdevelopmentordoesitcontinuouslychange withlearning.

4.4. Handandarmrepresentationratios

Regardingthehandandforearmmusclerepresentationratios,the childrenshowedlargerarmthanhandareas,andtheproportionofthe handincreasedwithageaccordingtoourhypothesis.Inaseminalmap- pingstudyofdistalandproximalmusclesinadults,itwasobservedthat theAPBmapwaslargerthantheFCR(Wassermannetal.,1992)whereas insquirrelmonkeys,thearmareawaslargerthanthehand(Cardand Gharbawie2020).Inourstudy,adolescentsexhibitedextensivevaria- tioninthismeasure,whichmaysuggestthatadolescenceisaperiodof dynamicplasticityinthemotorareas.Ithasbeenclaimedthatcortical thinning,whichisguidedbyagenetictimetableandbyexperience,pre- dominatesinadolescenceandincreaseswellbeyondadolescenceinto middleageandisassociatedwithwhitematterdevelopmentandmyeli- nation(Caseyetal.,2005;Gieddetal.,2009;Paus2010;Vandekaretal., 2015).Thoughagedependencyinthehand/armratiowasobserved, thisdependencydisappearedwhencontrolledfortheBBT,suggesting thatthehand/armratiocorrelateswithdexterityratherthanwithage.

Earlier,wedetectedsimilarpronouncedarmrepresentationintheleft, dominanthemisphereinsubjectswithAspergersyndromeascompared totypicallydevelopingpreadolescentboys,andthiswasrelatedtotheir poorerdexterity(Säisänenetal.,2019).Thefiner-scaledifferentiation oftheindividualfingersincreases(i.e.,topographicrepresentationsare refined)overthefirsttwoyears(duringearlydevelopment),coinciding withthematurationoffinemotorskills(Arcaroetal.,2019).Inastudy conductedwithyoungandoldmice,ashortdurationofreachtraining increasedtheareaofproximalforelimbmovementrepresentationsat theexpenseofdistalrepresentationsintheyounganimals,thisreorga- nizationmayhavebeenpartiallymediatedbyalong-termpotentiation (LTP)-likemechanismandsynapticpruning(Tennantetal.,2012).

4.5. Overlapbetweenhandandarmmuscles

Theoverlapisamapmetricsrelatedtothehand/armratio.Inour study,theoverlapbetweendistalandproximalmusclesvariedbetween 40and80%,inlinewithpreviouspublications(Melgarietal.,2008; Chieffoetal.,2016).Childrendisplayedlessoverlapthanthoseinthe olderagegroups.Thematurationoftheoverlapappearstooccurearlier

(inpreadolescence)thanthehand/armratio(atadolescence).Weob- servedapositivecorrelationbetweentheoverlapandmotorskills,but thiscorrelationdisappearedwhencontrolledforage.Ontheotherhand, theoverlapcorrelatedwithagewhencontrolledfordexterity,suggest- ingthattheoverlapintherighthemispherewasdirectlyrelatedwith ageratherthanindirectlyduetodexterity.Astructuralplasticitystudy examiningmotorlearninginratshasrevealedthatdistalandproximal forelimbprojectingneuronsareintermingledinthemotorcortexwith anoverlappingdistribution,whichdoesnotchangeasafunctionofskill acquisition(Wangetal.,2011).Theoverlapseemstobehighlyimpor- tantformovementcoordination,whilethesomatotopicdistinctiveness ofcentersofwithin-limbrepresentationscouldensurefinelyindividu- atedcontrol.Ithasbeensuggestedthatinpianoplayers,thelessex- tensiveoverlapinthedominanthemisphereandthereducedmaparea arereflectionsofthelong-termplasticityrelatedtomotorlearningof askill(Chieffoetal.,2016).Althoughseveralaspectsoftheoverlap— thetask-specificity(Masse-Alarieetal.,2017),training-relatedplasticity (Tycetal.,2005;Vaaltoetal.,2013),aswellasitspresenceinpatholog- icalconditionssuchaschronicpain(Schabrunetal.,2009;Tsaoetal., 2011;Schabrunetal.,2015)— havebeenstudied,theirinterpretation stillneedsfurtherclarification.

4.6. Changeinthedistributionofmuscle-specificCoGswithage

Thescatterofmuscle-specificCoGswas enlarged(mainlyposteri- orly)inpreadolescentindividualsascomparedtochildrenorthosein theolderagegroups.Thisreorganizationcoincideswithadynamicpe- riodinfinemotorbehavior.Ourpreviousinvestigationsintoexcitabil- ityandmaturationrevealedthattheexcitabilitycurvedidnotreach itsplateauinpreadolescents(Säisänenetal.,2018),whichmaypointto thepotentialforplasticity.Preadolescence,i.e.theso-calledcriticalwin- dowformotorfunctions(Shawetal.,2008),occursinparallelwiththe rapiddevelopmentofexecutiveskillsofplanning,workingmemory,and cognitiveflexibility,whereasmature“cognition” ischaracterizedbythe abilitytofilterandsuppressirrelevantinformationandactionsinfavor ofrelevantcues.Allaspectsofthemovementssuchasmovementiniti- ation,gripforceadaptation,andmaximumspeedofmovementarenot reachedatexactlythesametime(Forssberg1999;Fietzeketal.,2000).

OurfindingofscatteredCoGsinpreadolescence correspondswithan imagingstudythatobservedadditionalnodeswhichhavebeenpostu- lated toreflecttheneuraldynamicsunique tothematuratingmotor system,probablytoservethesomewhatelementarymovementspresent duringthepreadolescentyears(DennisandThompson2013).Astruc- turaldevelopmentalstudyonthecorticospinaltracthasshownthatat theageof11,theCSToriginwaslocatedinbothpre-andpostcentral gyrus,whereasanexclusivepre-orpostcentraloriginwasmorecom- moninyoungerchildren(Kumaretal.,2009).Ontheotherhand,an- otherstudyrevealedthatthematurationaldirectionintheCSTorigin wasfromanteriortoposteriorandincreasedcomplexitywithage,con- trastingourresults(Kwonetal.,2016).

4.7. Maturationofmapmetricsandmotorlearning

WeobservedtheCoGstobecomemoreconcentricwithage,andthe CoG ofourmainmuscleofinterestshiftedmediallywithageon the lefthemisphere.Areorganizationofthemotormapwasnecessaryfor theacquisitionofaskill(motorlearning),butthemaintenanceofthe reorganizedstatewas notnecessaryforthemaintenanceof thatskill (motorperformance)(Tennantetal.,2012).Lowermovementthresh- oldsmaybeassociatedwithincreasedsynapticefficacy,andsynaptic potentiationmaybemaintainedafterthemaphasreturnedtocontrol levels(Tennantetal.,2012).Duringearlyadulthood(20to30years ofage),atimeofoptimalbrainhealthandbehavior,spontaneousbeta activityofthemotorcortexasstudiedbyanMEGwasatitsminimum, whichwassuggestedastobeindicativeofgreaterneuronalefficiency

(11)

(Heinrichs-Grahametal.,2018).Adultshaveshownbothgreaterinte- grationwithinnetworksandgreatersegregationbetweennetworksthan isthecasein children(DennisandThompson2013).Regionswhose brainactivitycorrelateswithtaskperformancebecomemorefocalor fine-tuned,whereasotherregionsnotinvolvedintheaspectsofthebe- haviorthatundergospecificrefinementremainunchangedbytheexpe- rienceorevendecreaseinactivitywithage(Caseyetal.,2005).There isadynamicinterplayofsimultaneouslyoccurringprogressiveandre- gressiveevents;thegradualeliminationofexcessiveconnections,with theestablishmentandstabilizingofnascentsynapsesandstrengthening ofrelevantconnectionswithdevelopmentandexperience(Caseyetal., 2005).Thematurationofsuperficialwhitemattercontinuesuntilthe ageof18years(Wuetal.,2014).Thereducedinterconnectivitymay alsogenerateagreaternumberofindependentnetworks,supportingen- hancedfractionationandresolutionofmovement(Bianeetal.,2015).

Whenataskhasbeenextensivelypracticed,fewerneuronswithinthe motorcortexneedtobeactivetoproducethesamemovementwhile thenumberofsynapsesisincreasedonlyinthereorganizedareasofthe motorcortex.Ourpreviouslarge-scalestudyin youngandoldadults exploitingthesamemethod,revealedthelocationsoftheAPBmuscle hotspotsaroundbothM1andS1(Niskanenetal.,2010).Bothpre-and postcentralgyricontaincorticospinalcells,andthemapsdonotstrictly adhere toarchitectonic borders (Groppa et al., 2012; Arcaro et al., 2019).IthasbeenspeculatedthatbilateralS1-M1mightplayanim- portantroleinthe preparationandexecution ofcomplex movement (Shibasaki2012).

4.8. Mapcorrelationswithmotortasks

Asabehavioralcorrelateoffinemotorskillperformance,weuseda rathersimpletaskoftheBBTthatinvolvestheactivationofhandand forearmmuscles,andobservedanexpectedeffectofage.Thedexter- ityofthelefthand continuedtoimprovefromadolescencetoadult- hood,whereasthedominantrightonedidnotimprovefurther.Pread- olescentsandadultswereequallygoodwithbothhands;childrenand adolescentswerebetterwiththeirdominanthands.Thereareseveral alternativefinemotortestssuchasthenineholepegtest(NHPT),the fingertappingtest,orpinchgriptests(Bashiretal.,2014;Chieffoetal., 2016;Masse-Alarieetal.,2017;Grabetal.,2018;Sirkkaetal.,2020).

Thesetestsmayevaluatedifferentaspectsofthemotorfunctionandalso revealdifferencesbetweenthesexesduringmaturation(Herveetal., 2009).Overall,inter-individualvariationisamajorfeaturewithdiffer- entmotorproficiencytaskstypicallyencounteredindevelopingyoung childrenagedfromthreeto18yearsofage(Kakebeekeetal.,2018).No correlationswerefoundrelatedtotheself-reporteddegreeofhandpref- erence,butitisnoteworthythatallofourtestedsubjectswereclearly right-handed.

4.9. Interhemisphericdifferencesandasymmetry

Wedidnot observeasymmetry in rMT.Theincreasingsymmetry inactiveMT(aMT)withagesuggeststhatthematurationofthenon- dominantcortexiscompletebyearlyadulthood(Garveyetal.,2003).

Ourhypothesiswasthattherelativeproportionoftheleft,dominant hemispheremotormapwouldincreasewithage,butmapasymmetry wasnotobservedinthetotalstudypopulationorinanyspecificage group.Aroboticmappingstudyinparticipantsagedeightto18years, butnotspecificallyexaminingtheeffectofage,showedatrendtoward reducedmotormapareaandvolumeforthedominantlefthemisphere comparedtotheright(Grabetal.,2018).Asmallerareainthedom- inanthemispherehasbeeninterpretedasreflectingthemoreefficient organizationofrefinedmusclerepresentationsascomparedtothenon- dominantside.OurpreviousstudyinpreadolescentswithAspergersyn- dromerevealedasymmetryreflectedasalargerrepresentationintheleft hemispherethantherightone,ascomparedtocontrolsubjectswhose motormapsweresymmetric(Säisänenetal.,2019).Thepreadolescents

withAspergersyndromealsohadslightlylargeroverlapinthelefthemi- spherecomparedtotherighthemisphere(Säisänenetal.,2019).This topicisevidentlysomewhatcontroversial.Theoretically,mapasymme- trycouldbeexpectedsincethereisanatomicalasymmetryintheleft dorsalpremotorareawhichhasahardlydistinguishableisolateddor- salsubregion(Genonetal.,2018).Inadults,theincreasedoverlapand increasedareainthelefthemisphereascomparedtotherightwascon- sideredtoreflectdominance,whereasinpianists,thelessandthemore symmetricoverlapswerepostulatedreflectingthelong-termplasticity formotorlearning(Chieffoetal.,2016).Ahigheroverlapintheleft hemisphereover therightwasconsideredtoreflect thehighertrain- ingoverthelifetime,includinggrasping,lifting,andjointstabilization (Melgarietal.,2008).

Significantcorrelations between themapmetrics andmotorper- formancewerefoundonlyintheright,non-dominanthemisphere,al- thoughthelefthemisphereshowedasimilartrend.Acorticalplastic- ity studyin which 1Hz rTMSwas applied to therighthemisphere detectedsignificantdifferencesonlyintheright,non-dominanthemi- sphere(Bashiretal.,2014).Theauthorssuggestedthatthisfindingwas inagreementwiththerighthemi-agingmodeli.e.,therighthemisphere ismoresensitivetoagingeffectsthanitsleftcounterpart.Ourprevious resultsonthesamedatadetectedstrongerinhibitionmeasuredwitha silentperioddurationintherighthemisphereinchildren,butnotin otheragegroups(Säisänenetal.,2018).Structurally,thecortexwas locateddeeperinthelefthemispherecomparedthanintherightinall agegroupsotherthaninchildren.Thisagreeswithonepublishedstudy inwhichtheleftprecentralgyruswasfoundtobelocateddeeperthan therightone(Davis2020),andanearlierstudythatfoundtheleftcen- tral sulcustobe deeper,andtheintrasulcalsurfaceoftheprecentral gyrusincreasedcomparedtotheright-sidedstructures(Amuntsetal., 1996).Subsequently,thisfindingwasalsoassociatedwithhandpref- erencebutwaslimitedtomales(Amuntsetal.,2000).Itneedstobe mentioned thatoppositefindingshave alsobeenreported(Togaand Thompson2003).

4.10. Clinicalimplications

The motor mapping was safe and well-tolerated in all subjects, though occasional pain or discomfort related to TMS has been re- ported(in children,adolescentsandadults) in accordance withpre- viousstudiesinyounger subjects(Garveyetal.,2001;Gilbertetal., 2004;Coarkinetal.,2011;Narayanaetal.,2015a;Grabetal.,2018).

Theriskforadverseeffectsinchildrenandtoddlersissimilartothat inadults(Krishnanetal.,2015;Narayanaetal.,2015b).Considering applicability,theperformancelevelwassuggestedtobemoreimpor- tantinpredictingasuccessfulmappingoutcomethanthechronological age(Narayanaetal.,2015a).Inpediatricpopulations,highstimulation intensitiesarerequired(onaverage93%ofthemaximalstimulatorout- put(Coburgeretal.,2012)insteadofrelatingstimulationintensityto rMT,buteven100%maynot alwayssufficienttoelicitMEPswitha focalcoildespitethesupportofnavigation(Ciechanskietal.,2017).A previousstudyprovedthefeasibilityofroboticmappinganditssuit- abilityforinvestigatingdevelopmentalplasticity,thoughintwochil- dren(eight yearsof age),therMT wasexcessivelyhigh(Grabetal., 2018).Muscle activationcanbe used tolower theMT,butweonly studiedrelaxedmuscles,whichiscriticalifonewishestoacquireaccu- rateandreliableresultsinpresurgicalmappings(Lucenteetal.,2018).

Thestimulusintensityof110%ofrMTproducedquitelargemaps.How- ever,weconsideritappropriatesinceitisclearlysuprathreshold,but doesnotproducedtoostrongE-fieldandthusresultinamaptoolarge (KallioniemiandJulkunen2016).Alowerstimulusintensity,suchas 105%ofrMT,couldresultinsmallermapsinpresurgicalmapping;in factthisisalreadyoftendoneinclinicalpractice(Jungetal.,2019).The outcomeofmotormappinginchildrencanbemorerobust— whether ornotaninvoluntaryMEPiselicited.TheAPBseemedtobeanoptimal muscleofchoiceformotormapping,asistheFDI,whichisoftenused

(12)

inTMSstudies(Groppaetal.,2012).Theexcitabilitythresholdcanbe thelowestinanyhandorforearmmuscle,asseenforexampleinthe left-handedboyaged6.8years,whohadtherMTsfortheAPBof91and 100%,butthosefortheADMwere62and78%.Thereisevidencein adultsthatatthegrouplevel,theMTsoftheAPBandFCRaresimilar (Wassermannetal.,1992),whichweverifiedinthegroupofchildren, thoughtheAPBhotspotmaynotbeoptimalfortheECR.Themotor mappingwasbasedontheMToftheAPB,andwedidnotdetermine itforeachmuscleseparatelywhichwouldberecommendediffeasibly possible.Anelegantstudyonplasticityinpianistsalsousedanapproach assessingtherMTinahotspotinwhichtheMEPswereelicitedineither theAPBorADM(Chieffoetal.,2016).

4.11. Strengthsandlimitations

Comparedtoearliernon-navigatedstudies,electricfieldonlinenav- igationallowedustogainaccuratehigh-resolutionanatomicalinforma- tioninrelationtothehandknob,resultinginmorestableMEPswith significantlyhigheramplitudesandshorterlatencies(Julkunenetal., 2009).Strengthinourstudywas thatbothhemisphereswereexam- ined,inarandomizedorder,andseveraldistalandproximalmuscles wererecordedsimultaneously.However,itneedstobementioned,that secondarymusclesmayhavedifferentrepresentationsandoverlapsas theusedmappingintensitycouldbedifferentfromtherMTofAPB.

Whengatheringdataforcomputingthemotormapsize,weapplied onlyasinglestimuluspergridpoint.Byusingadensegridandthesoft- warewithanarrowbrightnessindicatorthataidedinholdingthetilting optimal,wecouldreliablydetectevensmallchanges.Previously,ithas beenshownthattherepeatingofstimulusateachgridpointincreases theaccuracyofthemapmeasures(Cavalerietal.,2017).However,the gridweused(0.5cmx0.5cm)wasdensercomparedtothat(1cmx 1cm)usedinCavalerietal.(2017),andifweweretoplaceourstimuli withinthatgrid,itwouldcorrespondfourofourstimuliwithinonegrid element(1cm2).Inourstudy,thestimuluslocationswereconsidered inconjunctionwiththeresponseamplitude,and2-dimensionalspline interpolationwasused,whichreducesthevariabilityofindividualre- sponseswhen50μVstreamlinewastakentorepresenttheedgeofthe representationarea.Thepotentiallimitationsofusingonlyonestimulus pergridpointariseattheedgesofthemotormap,whereprobabilityof inductionofaresponseabovethethresholdamplitudearecloseto50%

andtherefore,thislimitationmayhaveaddedunbiasednoisetoourmap measures,buttheuseofdensegriddefusestheabove-mentionedphe- nomenon.Therestrictednumberofstimuliwasconsideredajustified compromisebykeepingthedurationofmeasurementsessiontolerable forthesubjects.Theinterstimulusintervalwaslongenoughtoprevent anyhabituationeffect.

Thenumberofparticipantswasnotlargeenoughtopermitreliable examinationof differences in motor map metricsbetween the sexes that areknowntoinfluence braindevelopment (Giedd et al., 2012; DennisandThompson2013;Akilanetal.,2020).Inasmallgroupsuch asours,thedifferenceneedstobegreaterinordertoresultinasmall p-value.However,despiteofthesmallgroupsizes,wefoundstatisti- callysignificantdifferencesinmotormapmetrics.Thestudywouldhave benefitedifwehadconductedseveralmotortasks.Mostofthemea- surementswereperformedatthesametimeoftheday,andtomaintain theattentionlevel,theparticipantswatchedaDVDduringtheTMS, buttheremaybevariabilityintermsofbothattentionandfatigue.The leisure-timeactivitiesrelatedtomotorskillssuchassportsorplayingan instrumentwerenotcontrolled.Cross-talkfromadjacentmuscleswhen usingsurfaceelectrodesmayhavecompromisedtheinterpretationof theresults(e.g.mapoverlap)(Masse-Alarieetal.,2017).Itshouldalso benotedthatthereisextensivevariabilityinbrainstructureamongin- dividuals,especiallyduringdevelopment(Caseyetal.,2005).

5. Conclusions

Weevaluated theeloquentupperlimbmotormapsin relationto theanatomyindifferentagegroupsaccuratelyusingelectricfieldnav- igatedTMSandmusclesatrest.Topographicmapswerefoundtobe ratheranalogousinallagegroupswithoutamajorcontributionfrom higherorder motorareasaroundM1.Themuscle-specificCoGswere scatteredinlargeareasincludingpostcentralareasinpreadolescence, whichisadynamicphaseinmotorfunctionimprovement.Associations between themapmetricsandhand dexteritywerefoundonlyin the righthemisphere.Clinically,theseresultsmayprovideareferencefor outliningfunctionalareasasapartofamultimodalpresurgicalevalua- tioninthepediatricpopulation.Weencouragerecordingofseveralup- perlimbmusclesduringmotormapping,astheexcitabilitycanbelower insomeotherhandorforearmmuscle,especiallyinchildrenwhohavea proportionallylargerarmrepresentationareaascomparedtothehand.

nTMSwasfoundtobewell-suitedforstudyingadevelopmentalcourse intheorganizationofthemotorcortex,andmotormappingmaybeuse- fulinfuturestudiesasabiomarkeroftreatment-relatedimprovement indevelopmentaldisabilitiessuchasperinatalstroke.Thedevelopment ofthemotormapbeforeschoolagemeritsfurtherinvestigation,andin thefuture,itwouldbeextremelyinterestingtostudythelongitudinal changeinthemotormapsaswellasotherbrainareas(thalamus,cere- bellum,spinalcordandcognitiveareas)inadditiontothecortex,allof whicharecandidatelocationsformotorskilllearning-inducedplasticity (Tennantetal.,2012).

DeclarationofCompetingInterest

LSandPJhavereceivedtravelbursariesunrelatedtothisstudyfrom NexstimPlc.PJhasasharedpatentwithNexstimPlc.Therestofthe authorsdeclarenoconflictofinterest.

Acknowledgments

VirpiLindi(deceased)PhDandAino-MaijaElorantaPhDfromthe UniversityofEasternFinlandareacknowledgedfortheirhelpwithre- cruitment.EwenMacDonaldisacknowledgedforlanguageediting.The authorswishtothankall subjectsfor participatingin thestudy. The fundingsourceshadnoinvolvementinthestudydesign;inthecollec- tion,analysis,andinterpretationofdata;inthewritingofthereport;

andinthedecisiontosubmitthearticleforpublication.

Funding

ThestudywasfundedbytheStateResearchFunding(grantnumber 5041730)andtheJuhoVainioFoundation.Laura Säisänenwassup- portedbytheArvoandLeaYlppö Foundation,andtheAcademyofFin- land(grantnumber322423).

Creditauthorstatement

LauraSäisänen;involvedinconceptualizationoftheresearch,anal- ysisofthedata;preparationofthemanuscript

MerviKönönen;developmentanddesignofmethodology,analysis ofthedata;preparationofthemanuscript;datavisualization

EiniNiskanen;analysisofthedata;preparationofthemanuscript TimoLakka;involvedinconceptualizationoftheresearch;acquisi- tionofthefinancialsupportfortheprojectleadingtothispublication.

NiinaLintu;involvedinconceptualizationoftheresearch;recruiting theparticipants

RitvaVanninen;involvedinconceptualizationoftheresearch;acqui- sitionofthefinancialsupportfortheprojectleadingtothispublication.

Petro Julkunen;developmentanddesignof methodology,in pro- gramming,implementationofcodeandsupportingalgorithms,prepa- rationofthemanuscript

Viittaukset

LIITTYVÄT TIEDOSTOT

The shifting political currents in the West, resulting in the triumphs of anti-globalist sen- timents exemplified by the Brexit referendum and the election of President Trump in

Mansikan kauppakestävyyden parantaminen -tutkimushankkeessa kesän 1995 kokeissa erot jäähdytettyjen ja jäähdyttämättömien mansikoiden vaurioitumisessa kuljetusta

At an average age of 24 years, women who had presented CD in childhood/adolescence, relative to the healthy women displayed abnormalities of GMV in left STG, lingual gyrus,

Left ventricular (LV) volume measured by (A) echocardiography and (B) CMR increased slowly with aging in transgenic (TG) mice and a marked dilatation of the LV was observed at the

There was a posterior-anterior shift in the APB hotspot coordinate with age, and the APB coordinate in the left hemisphere exhibited a lateral to medial shift with age from

Työn merkityksellisyyden rakentamista ohjaa moraalinen kehys; se auttaa ihmistä valitsemaan asioita, joihin hän sitoutuu. Yksilön moraaliseen kehyk- seen voi kytkeytyä

Harvardin yliopiston professori Stanley Joel Reiser totesikin Flexnerin hengessä vuonna 1978, että moderni lääketiede seisoo toinen jalka vakaasti biologiassa toisen jalan ollessa

Since the 1950s there have been major reforms in science education – in the USA, UK and other countries – with a shift away from a focus on content and prescribed practical work,