• Ei tuloksia

Isoflurane affects brain functional connectivity in rats 1 month after exposure

N/A
N/A
Info
Lataa
Protected

Academic year: 2022

Jaa "Isoflurane affects brain functional connectivity in rats 1 month after exposure"

Copied!
12
0
0

Kokoteksti

(1)

UEF//eRepository

DSpace https://erepo.uef.fi

Rinnakkaistallenteet Terveystieteiden tiedekunta

2021

Isoflurane affects brain functional

connectivity in rats 1 month after exposure

Stenroos, Petteri

Elsevier BV

Tieteelliset aikakauslehtiartikkelit

© 2021 The Authors

CC BY-NC-ND https://creativecommons.org/licenses/by-nc-nd/4.0/

http://dx.doi.org/10.1016/j.neuroimage.2021.117987

https://erepo.uef.fi/handle/123456789/26834

Downloaded from University of Eastern Finland's eRepository

(2)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Isoflurane affects brain functional connectivity in rats 1 month after exposure

Petteri Stenroos

a

, Tiina Pirttimäki

a

, Jaakko Paasonen

a

, Ekaterina Paasonen

a

, Raimo A Salo

a

, Hennariikka Koivisto

a

, Teemu Natunen

b

, Petra Mäkinen

b

, Teemu Kuulasmaa

b

,

Mikko Hiltunen

b

, Heikki Tanila

a

, Olli Gröhn

a,

aA.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland

bInstitute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland

a r t i c le i n f o

Keywords:

Brain plasticity Local field potential Functional connectivity

Functional magnetic resonance imaging Isoflurane

Rats

a b s t r a ct

Isoflurane,themostcommonlyusedpreclinicalanesthetic,inducesbrainplasticityandlong-termcellularand molecularchangesleadingtobehavioraland/orcognitiveconsequences.Thesechangesaremostlikelyassoci- atedwithnetwork-levelchangesinbrainfunction.Toelucidatethemechanismsunderlyinglong-termeffectsof isoflurane,weinvestigatedtheinfluenceofasingleisofluraneexposureonfunctionalconnectivity,brainelectri- calactivity,andgeneexpression.

MaleWistarrats(n=22)wereexposedto1.8%isofluranefor3h.Controlrats(n=22)spent3hinthesameroom withoutexposuretoanesthesia.After1month,functionalconnectivitywasevaluatedwithresting-statefunctional magneticresonanceimaging(fMRI;n=6+6)andlocalfieldpotentialmeasurements(n=6+6)inanesthetized animals.Awholegenomeexpressionanalysis(n=10+10)wasalsoconductedwithmRNA-sequencingfrom corticalandhippocampaltissuesamples.

Isofluranetreatmentstrengthenedthalamo-corticalandhippocampal-corticalfunctionalconnectivity.Cortical low-frequencyfMRIpowerwasalsosignificantlyincreasedinresponsetotheisofluranetreatment.Thelocalfield potentialresultsindicatingstrengthenedhippocampal-corticalalphaandbetacoherencewereingoodagreement withthefMRIfindings.Furthermore,alteredexpressionwasfoundin20corticalgenes,severalofwhichare involvedinneuronalsignaltransmission,butnogeneexpressionchangeswerenotedinthehippocampus.

Isofluraneinducedprolongedchangesinthalamo-corticalandhippocampal-corticalfunctionandexpressionof genescontributingtosignaltransmissioninthecortex.Furtherstudiesarerequiredtoinvestigatewhetherthese changesareassociatedwiththepostoperativebehavioralandcognitivesymptomscommonlyobservedinpatients andanimals.

1. Introduction

Inpreclinicalandclinicalwork, generalanesthetics areroutinely usedduringsurgicalprocedurestopreventmovement,andtominimize experiencedstressandpain.Ideally,anestheticsworkbycausingtem- poraryandreversiblelossofconsciousnessandreactivitywithoutad- ditionalsideeffects.Generalanesthetics,however,altertypicalawake brainactivitybyactingonmultipleneuralcircuits(Brownetal.,2011, 2010).Functionalmagnetic resonanceimaging(fMRI)(Biswalet al., 1995) studiesreveal that anesthetics alternormal whole-brainfunc- tional connectivity in the resting state (Paasonen et al., 2018), the

Abbreviations.BOLD,bloodoxygenationleveldependent;BS,burstsuppression;CA1,cornuammonis1,DG,dentategyrus;EEG,electroencephalography;EPI, echoplanarimaging;ID,innerdiameter;LFP,localfieldpotential;SE,spinecho,S1L,primaryleftsomatosensorycortex,S1R,primaryrightsomatosensorycortex.

Correspondingauthor.

activityevoked byexternalstimulation (Paasonenet al., 2016),and the hemodynamic response (Martin et al., 2006), which is the ba- sis ofthefMRIsignal (Ogawaetal., 1990).Furthermore, theeffects of anesthetics canlast beyondtheduration oftheanesthesia. Inthe adultanimalandhumanbrain,anestheticsinduceirreversiblemolecu- lar,cellular,andgeneticchanges,leadingtolong-termstructuraland functional changes(Colonet al., 2017).These changes occur at the levelofionchannels,synapses,andcells,whichacttogethertomod- ulate neuronalnetworks, andmay lead tobehavioral and cognitive manifestations.Moreover,anestheticsplayapotentialroleinthegen- eration of postoperative cognitivedysfunction (Miller et al., 2018),

https://doi.org/10.1016/j.neuroimage.2021.117987

Received2July2020;Receivedinrevisedform16February2021;Accepted16March2021 Availableonline21March2021

1053-8119/© 2021TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense

(3)

although there is currently no general consensus (Rasmussen et al., 2003).

Isoflurane,oneofthemostwidelyusedanestheticsinpreclinicalex- periments,hasbothacuteandchroniceffectsonbrainfunction.Acutely, itsuppresseswholebrainneuronalactivityandmodulatesfunctional connectivity (Liu et al., 2013a). Additionally, at high doses, isoflu- ranecausessynchronousburstsuppression(BS)activityin thecortex (Liuetal., 2011).Atthecellularlevel, isofluranetriggers secondary signalingcascadesleadingtochanges inproteinandgeneregulation (Colonetal.,2017).Severalgeneandproteinexpressionstudieshavere- portedincreasedneuroinflammation,changedmicrogliareactivity,and apoptosis(Buntingetal.,2015;Culleyetal.,2006;Edmandsetal.,2013; Kodamaetal.,2011;Lowesetal.,2017;Zureketal.,2014),andhisto- logicstudieshavedemonstratedimpairedsynapticstructure,decreased neuronaldensity,andincreasedneuronaldifferentiation(Brineretal., 2010; Erassoetal., 2013; Platholiet al., 2014)in the hippocampus orthecortexhourstodaysafterisofluraneexposure.Moreover,gene expressionchangesimportantforneuralplasticitycanoccurinparal- lelwiththese changes evendaysorweeks aftertheinitial exposure (Culleyetal.,2006;Iietal.,2016;Joksovicetal.,2015;Rammesetal., 2009a; Uchimoto et al., 2014; Zhong et al., 2015).Also, isoflurane increasesblood-brainbarrierpermeability(Tétraultetal.,2008)thus leavingthebraintissueexposedtoperipheralinflammatoryresponses (SafavyniaandGoldstein,2019).Further,manypreclinicalanimalstud- ieshavedemonstratedconsequencesofisofluraneonmemoryandbe- havior(Culleyetal.,2004;LinandZuo,2011;Rammesetal.,2009b; Stratmann et al., 2010; Uchimoto et al., 2014; Zhang et al., 2014; Zhongetal.,2015)uptoseveralweeksafter2–4hanesthesiainduction.

Nostudiestodate,however,haveevaluatedchroniceffectsofisoflurane anesthesiaonwhole-brainfunctionalconnectivity.

Therefore,weinvestigatedtheisoflurane-inducedlong-termmodula- tionofbrainfunctionbyfMRI,localfieldpotential(LFP)measurements, andgeneexpressionmapping1monthaftertheinitialexposure.The resultsprovideinsightsintothemechanismsunderlyingtheisoflurane- inducedlong-termeffectsonthebrain,andcanthusbeappliedtoeval- uatethelong-terminfluenceofanesthesiaonpreclinicalinvivostudy designs.

2. Materialsandmethods 2.1. Animals

All animal procedureswere approvedby theAnimal Experiment BoardinFinland,andconductedinaccordancewiththeguidelinesset bytheEuropeanCommissionDirective2010/63/EU.Atotalof44adult (300–500gatthetimeoftheisofluranetreatment)maleratswereused (RccHanWistar,purchasedfromLaboratoryAnimalCenter,University ofEasternFinlandandEnvigoLaboratories,Netherlands).Theratswere dividedinto3separategroupsforfMRI(n=12),LFP(n=12),andgene expression(n=20)studies.Ineachgroup,ratswereequallydivided intotheisofluranetreatmentgrouporcontrolgroupwithnoisoflurane treatment.Animalsfrom2providerswereequallydistributedtoboth controlandtreatmentgroupsforthegeneexpressionstudy.Therats weregroup-housed inventilatedcagesandmaintainedona12/12h light-darkcycleataroomtemperatureof22±2°Cand50%−60%hu- midity.Foodandtapwaterwereavailableadlibitum.

2.2. Isofluranetreatment

Ratsintheisofluranetreatmentgroupwereexposedto1.8%isoflu- raneinO2/N2(30%/70%)for3hwhilepositionedontopofaheat- ingmattomaintainbodytemperature.Theanesthesiaconcentration andtimewereselectedtomimicalong-lastingsurgicalprocedure.Also, Colonetal.(2017)reportedthatexposureto1.2%to3.5%isoflurane anesthesiafor2to4hinducesbehavioral changesweekstomonths later.Adultratsinallgroupsweretreatedwithisofluranewithin1to

3-daytimeperiod.Controlratsweremovedtothesamelocationasthe isoflurane-treatedratsandkeptfor3hintheirhomecages,butwere nottreatedwithisoflurane.Onemonthaftertheisofluraneexposure,the firstgroupofratswasimagedwithfMRI,thesecondgroupwasusedin LFPmeasurements,andthethirdgroupwasusedforgeneexpression analysis(Fig.1).

2.3. fMRIprotocol

BeforetheMRImeasurements,cannulae(BDIntramedicTM PE-10, FranklinLakes,NJ,USA)wereinsertedintothefemoralveinandartery underisofluraneanesthesia(Attanevet1000mg/g,PiramalHealthcare UKLimited,Northumberland,UK;5%inductionand1.5%−2%mainte- nanceinamixtureofN2/O270%/30%)forinjectingamusclerelaxant (~0.15mlof0.3mg/mlbolusand~1mgkg1 h1i.v.infusion,pan- curoniumbromide,Pavulon,Actavis)andsamplingthearterialblood (150μl).Atracheostomywasperformedformechanicallyventilating therats(Inspira,HarvardApparatus)tomaintainnormalbloodgasval- ues(analyzedwithi-STATModel300,AbbottPointofCareInc.,Prince- ton,NJ,USA).Thedurationofthecannulationandtracheostomypro- cedureswas30±6minfortreatedratsand28±5minforcontrolrats (p>0.70,t-test).

MRIwasconductedina7TBrukerPharmascanmagnetrunbyPar- aVision5.1softwareandequippedwithaBrukerquadratureresonator volumecoil(ID=72mm)andaratbrainquadraturesurfacecoil.Lo- calshimming ofthebrainwas conductedwitha3Dfieldmap-based method.fMRIwasperformedusingasingle-shotspin-echoechoplanar imaging(SE-EPI)sequencewiththefollowingparameters:TR2000ms, TE45ms,matrixsize64×64,field-of-view2.5×2.5cm,11slicesof 1.5-mmthickness,andabandwidthof250kHz.AnatomicT2-weighted imageswereobtainedusingtheTurboRAREsequencewiththefollow- ingparameters:TR4680ms,echospacing16.13ms,8echoes,effective echotime48.4ms,matrixsize512×512,field-of-view5.0×5.0cm2, 30slicesof0.75-mmthickness,andbandwidthof46.9kHz.

Resting-statefMRIwasrununder3isofluraneconcentrationsin5 measurementperiods:1.3%,2.0%,2nd1.3%,3.0%,anddeadanimal (Fig.1).A1.3%concentrationwas selectedtorepresentamoderate andtypicalisofluraneconcentrationaccordingtothepreclinicalfMRI literature(Haenseletal.,2015;Jonckersetal.,2015).Concentrationsof 2.0%and3.0%wereselectedtorepresentadeepisofluraneconcentra- tioncausingeasilydistinguishedBSneuronalactivity(Liuetal.,2011).

Eachperiodlasted10min(300volumes)andtherewasa10-minpause betweeneachperiodtoavoidcarry-overeffectsofthepreviousisoflu- raneconcentration.Animalsweresacrificedimmediatelyafterthemea- surementsbyinjectingsaturatedKCl(~0.3ml,i.v.)under5%isoflurane anesthesia.

2.4. fMRIanalysis

fMRIdatawerefirstconvertedtoNIfTI(http://aedes.uef.fi),then slice-time-andmotion-corrected,co-registeredtoaselectedreference brain, andsmoothed (2 × 2 voxel full-width at half-maximum) us- ingSPM8(https://www.fil.ion.ucl.ac.uk/spm/software/spm8).Regions of interests (ROIs) were drawnon thereference brain according to an anatomic atlas (Paxinos and Watson, 2004). Twelve ROIs were selected forthewhole-brainanalysis, includingauditorycortex,hip- pocampus,hypothalamus,medialfrontalcortex,medialthalamus,mo- torcortex,nucleusaccumbens,retrosplenialcortex,somatosensorycor- tex,striatum,ventrolateralthalamus,andvisualcortex(Supplementary Figure1).

Resting-statefunctionalconnectivityanalysiswasconductedusing the12ROI-template.Afterband-passfilteringat0.01-0.15Hz,aPear- soncorrelation(r)analysiswasperformedduringthe10-minresting- stateperiodsateachisofluraneconcentrationtocalculatethecorrela- tioncoefficientsbetweentheROIs.Additionally,correlationswerecal- culatedwithglobalsignalregressiontostudytheimpactofastrongBS

(4)

Fig.1. Experimenttimelineandtheisofluraneadministrationschemeusedinthelocalfieldpotential(LFP)andfunctionalmagneticresonanceimaging(fMRI) measurements.Measurementswereconductedwithmechanicallyventilatedratsunderisofluraneconcentrationsof1.3%,2.0%,2nd1.3%and3.0%,andpost- mortem.

signalprofileoncorrelationvalues(SupplementaryFigure2).Theglobal signalwasobtainedfromthebrainmask,andpartialcorrelationcoeffi- cientswerecalculatedbetweentheROIsusingthepartialcorr-function inMatlab(R2011a).Motionregressionwasnotnecessaryastheanimals wereparalyzedandmechanicallyventilated.Calculatedr-valueswere transformedtoz-scoresbyFisherz-transformationpriortocalculating groupaveragesandperformingstatisticalcomparisons.Subsequently, thez-scoreswereconvertedbacktor-values.

ROI-basedcorrelationmatriceswereconstructedfromeachgroup, andagroup-leveldifferencematrixwascalculatedbysubtractingthe meancorrelationvaluesofthecontrolratsfromthoseoftheisoflurane- treatedrats(Fig.4AandB).Thestandarddeviationsofthecorrelation valuesfrombothgroupsareillustratedseparatelyinamatrixformat (SupplementaryFigure3).

Tovisualizefindingsobservedinthecorrelationmatrices,voxel-wise correlationmapsweregeneratedfromthesmoothed imagesbyusing seedregions in thesomatosensorycortex, hippocampus,andventro- lateralthalamus(SupplementaryFigure4).Valueswerethresholdedat r>0.1.fMRIsignalpowerspectrumanalysiswasperformedfromROIs inthecortexandhippocampus(Fig.5).Beforecalculatingthepower, thefMRIsignalwasnormalizedusingapercentsignalchangetransfor- mation.Statisticaltestswereperformedfromthesumofvaluesinthe 0.01-0.15Hzfrequencyrange.

2.5. LFPprotocol

Epidural screw(BN 650, BossardHolding AG,Switzerland) elec- trodesandhippocampaldoubleelectrodesmadeofstainlesssteelwire (50-μmdiameter,Nr.15168,CaliforniaFineWireCo.,GroverBeach,CA, USA)witha600-μmtipseparationwereprepared,electrochemically cleaned,andtested forimpedance(490±44Ω,and273±104kΩ, respectively).

Theratwasplacedintoastereotaxicframe(DavidKopfInstruments, Tujunga,CA,USA).Thescalpwasremoved,andtheskullwascleaned withsterilesaline,and3%hydrogenperoxide.Screwswereimplanted bilaterallyovertheleft(S1L)andright(S1R)(AP:−1,ML:+/-3mm) primarysomatosensorycortex.Adoubletwireelectrodewasimplanted intotherighthippocampusatthelocationsofrightdentategyrus(DG) (AP:−3.8,ML:+1.6,DV:−4.3mm)andrightCA1(AP:−3.8,ML:+1.6, DV:−3.7mm).Ascrewelectrode,usedasareference,wasplacedon topofthecerebellum(AP:−12,ML:−2mm).Theendoftheinsulated silverwire(0.2mmbarewirediameter)wasexposedandplacedunder theskintoserveasagroundelectrode.Afterelectrodeimplantation,the femoralveinandarterywerecatheterizedasdescribedinSection2.3.

Finally,atracheostomywasperformedandtheratswereventilatedto maintainnormalbloodgasvaluesandtoensuresimilarmeasurement conditionsasinthefMRIexperiments.Thetotaldurationoftheelec- trodeimplantation,cannulation,andthetracheostomyprocedureswas

106±8minfortreatedratsand99±8minforcontrolrats(p>0.30, t-test).

LFPwasrecordedwithSciWorksdataacquisitionsystem(Datawave Technologies,Loveland,CO,USA)witha2049-Hzsamplingrate.Mea- surementswereconductedwiththeidenticalanesthesiaprotocolused forthefMRImeasurements:ratswererecordedfor10minateachisoflu- raneconcentrationwith10-minbreaksbetweenperiodsandfinallywith thedeadanimal.Theorderofrecordingfromcontrolandtreatedrats was randomized.Animalsweresacrificedbyinjecting KClunder5%

isofluraneanesthesiaasdescribedabove.

2.6. LFPanalysis

DatawereanalyzedwithMatlabandSpike2,version8.First,the directcurrent componentsof the signalwereremoved, signals were band-stopfilteredat49–51Hzusinganotchfilter,andband-passfil- teredat1–90Hzusingasecond-orderButterworthfilter(Spike2).LFP coherence(Fig.6)andaspectrogram(SupplementaryFigure5)were obtainedfromeachisofluraneperiodusingthemscohereandspectro- gramfunctions,respectively,inMatlabwitha4-swindowsizeanda 2-swindowoverlap.Forthecoherenceanalyzes,thevaluesfromeach frequencyband(delta,1–4Hz;theta,4–8Hz;alpha,8–13Hz;andbeta 13–30Hz)weresummatedseparately,andthebandsweresubsequently comparedbetweengroups.

BS activity from each channel was analyzed with a Mat- lab script FindRipples (http://fmatoolbox.sourceforge.net/Contents/

FMAToolbox/Analyses/FindRipples.html)thatwasfurthermodifiedin- house.Burstsweredetectedasepochsexceedinganamplitudeof4SD abovethebaselinethathadamaximaldurationof2000msandamini- malinter-burstintervalof10msduring1.3%isofluraneanesthesia,and aminimalinter-burstintervalof400msin2.0%and3.0%isoflurane anesthesia.

Detectedepochswereusedtocalculateburstoccurrencerate(1/s), duration of suppression periods (s), and amplitudeof burstperiods (Fig.3A–C).Burstoccurrencerateswerealsoinspectedmanuallyfrom thedataobtainedunder2.0%isofluraneanesthesiatovalidatetheac- curacyoftheautomaticdetection.Theoccurrenceratesdidnotdiffer significantly betweenthemanual andautomaticdetection (p= 0.18 and0.41inthecontrolandtreatedgroups,respectively,t-test).Aver- agedburstoccurrenceratesandsuppressiondurationswerecalculated foreachbrainarea(S1L,S1R,DG,andCA1).Tostudytheamplitude ofburstactivity,thesuppressionperiodswerefirstremovedfromthe signal.Then,therootmeansquare(rms)functionofMatlabwasusedto obtainrmsvaluesfortheremainingsignalforeachisofluraneconcen- trationseparately.

(5)

2.7. mRNAsequencing

Aftertheinitial isofluranetreatmentanda waiting periodof 30 days,animalswereperfused,andbrainregionswereextractedforthe mRNA-sequencinganalysis.Forbrainsampleextraction,theratswere firstanesthetizedwith5%isoflurane.Aneedlewasinsertedintotheleft ventricletopuncturethevenacava.Theanimalswereperfusedwith ice-coldNaClataflowrateof30ml/minforatotalof4min.Immedi- atelyaftertheperfusion,theheadwasdetachedwithaguillotine,the brainwasextractedfromtheskull,andregionsfromthesomatosensory cortexandhippocampusweredissectedunilaterally.Thetimebetween anesthesiainductionanddeathwas15to20min.Brainsamples(n=40) werequicklyfrozeninliquidnitrogenandstoredat−80°C.Theorder ofobtainingtissuefromcontrolandtreatedratswasrandomized.Later, thetissuewashomogenizedincoldphosphate-bufferedsalineandTRI- zolReagent,andtotalRNAwasextractedwiththeDirect-zolTMRNA Miniprep(ZymoResearch,Irvine,CA,USA).

TotalRNAwasstoredat−80°Cbeforebeinganalyzedbystranded mRNAsequencingattheFinnishFunctionalGenomicsCentre(Turku CentreforBiotechnology,UniversityofTurkuandÅboAkademiUni- versity).First,thequalityofthesampleswasverifiedbytheAdvanced AnalyticalFragmentAnalyzer(Agilent)andtheRNAconcentrationwas measuredwithQubit® FluorometricQuantitation(LifeTechnologies).

TheRNAlibrarywaspreparedusingaTruSeq® StrandedmRNASample PreparationKit(Illumina).The40librarieswithgoodquality(≥85%

basesaboveQ30)wererunin2lanes.Samplesweresequencedwith 260–320 M reads/lane (minimum of 13 M reads/sample)and with single-readlengthof1×50bp(IlluminaHiSeq3000).Rawdatawas deliveredinfastq-format.

2.8. Geneexpressionanalysis

First,sequencingadaptersequenceswereremoved,andthereads werequality-trimmed(Trimmomaticversion0.38)(Bolgeretal.,2014) and mapped against the ribosomal reference sequences (build 6.0) (Bowtie2version2.2.3)(LangmeadandSalzberg,2012).Successfully mappedreadswerethenabandoned.Theremainingreadswerealigned withtheratreferencetranscriptome(build6.0)andtranscriptabun- dancequantification was performed(Kallisto v.0.44.0) (Bray et al., 2016).

Abundanceestimates werethencollapsedtogene-levelcounts (R packagetximportversion1.10.1,R3.5.1)(Sonesonetal.,2016)sepa- ratelyfromthesomatosensorycortex(n=20)andhippocampus(n=20) ofindividualanimals.Countswerepre-filtered(atleast3sampleswitha countof5orhigher)andnormalized(RpackageDESeq2version1.22.2) (Loveetal.,2014).

Finally,geneontologyanalysiswasperformedbycomparingthesig- nificantlydifferentlyexpressinggenesandgeneclassestoothergenes andgeneclasses from studies investigatingshort-term (days) effects of isoflurane anesthesia (Bunting et al., 2015; Culley et al., 2006; Dingetal.,2017;Edmandsetal.,2013;Lowesetal.,2017;Zureketal., 2014).First,inthePantherclassificationsystem(PANTHER14.1),com- mon genesandclasses fromotherstudieswerefilteredby statistical overexpressiontestsbasedonbiologicprocessontology(p>0.05,FDR corrected,Fisher’sexacttest),Thestatisticallyoverexpressedgenesand classeswerethencomparedwithgenesandclassesfromourstudy.

2.9. Statisticalanalysis

Statisticaltestingforcorrelationmatrices,fMRIpower,LFPcoher- ence,theburstoccurrencerate,suppressionduration,andburstampli- tudewasconductedbyperforming2-tailed2-samplet-tests(p<0.05)in Matlab,usingafalsediscoveryrate(FDR)toaccountformultiplecom- parisons.Thedifferentiallyexpressedgenes(log2fold-changes)between theisofluranetreatmentandcontrolgroups(SupplementaryFigure6) wereanalyzedwithlikelihoodratiotestinDESeq2separatelyfromthe

somatosensorycortex(n=10+10)andthehippocampus(n=10+10).

TheFDRwasusedtoaccountformultiplecomparisons.Alldataareex- pressedasmean±SD.Thep-valuesareindicatedas<0.05,<0.01, and<0.001.OriginaldataofthisstudyareavailableatMendeley Data(http://dx.doi.org/10.17632/wxftdp4n6x.1).Allcodesareavail- ableondemandbyemailingthecorrespondingauthor.

3. Results

Noneoftheanimalswereexcludedfromtheanalysesduetomove- mentoranatomicalanomalies.

3.1. Physiologicparameters

Noneofthemeasuredphysiologicparametersdifferedsignificantly between theisoflurane-treatedand controlrats. Inthe fMRI experi- ments,thevalues wereasfollows: pCO2 (39.4±3.9controlmmHg, 44.9±4.9mmHgtreated;p=0.401),pO2(148.7±11.7mmHgcon- trol,145.8±12.1mmHgtreated;p=0.870),andpH(7.32±0.03con- trol,7.32±0.03;p=1.000).IntheLFPexperiments,thecorrespond- ingvalueswereasfollows:pCO2 (41.5±3.2mmHg control,41.4± 3.4mmHgtreated;p=0.972),pO2(155.2±18.7mmHgcontrol,157.7

±14.0mmHgtreated;p=0.917),andpH(7.42±0.02control,7.39± 0.02treated;p=0.326).

3.2. Burstsuppression

ElectrophysiologicalandfMRIdatawereobtainedunder3different isofluraneconcentrations(1.3%,2.0%,and3.0%).Representative2-min periodsoffilteredLFPsignalsfromananimalinthecontrolandanani- malinthetreatedgroupduringanesthesiawitheachisofluraneconcen- trationareprovidedinFig.2.Asexpected,isoflurane-relatedinter-burst intervalswereshortduringthelowestanestheticconcentrations(1.3%), becamelongerunder2.0%isoflurane,andonlyoccasionalburstswere visibleinacontinuouslysuppressedstateunder3.0%isoflurane.The typicalburstlengthwas1–2sandintra-burstfrequenciesrangedfrom 1to40Hz.

TheparametersrelatedtoBS,analyzedfromtheLFPdata,areshown in Fig.3.Theoccurrencerate,durationofBSperiods,andburstam- plitudes didnot differsignificantlybetween groupsin eithertheso- matosensorycortex(1.3%:p>0.47;2.0%:p>0.94;3.0%:p>0.22, FDRadjusted)orhippocampus(1.3%:p>0.38;2.0%:p>0.86;3.0%:

p>0.13,FDRadjusted).

3.3. Functionalconnectivity

Functionalconnectivityresultswithoutglobalsignalregressionare summarizedingroup-levelmatrices(Fig.4).Asageneralobservation, functionalconnectivity differedbetween groupsin thehippocampal- cortical,thalamo-cortical,andcortico-striatalconnections.Differences wereclearestwiththe2.0%isoflurane,whilesomesignificantdiffer- enceswerealsoobservedwith1.3%isoflurane.Correspondingresults with global signal regression areshown in Supplementary Figure 2 wheresimilar,butslightlyweaker,findingscanbeobservedwhencom- paredtotheresultsobtainedwithoutglobalsignalregression.

Cortico-corticalfunctionalconnectivitydidnot differsignificantly betweengroups(p≥0.07;Fig.4).Isofluranetreatment,however,af- fected striatal connectivity with the visual cortex and hippocampus (p<0.05FDRadjusted).Interestingly,hippocampal-corticalconnectiv- itydisplayedwidegroup-leveldifferences(5of6ROIpairs,p<0.05 FDRadjusted).Similarly,theconnectivityoftheventrolateralandme- dialthalamuswithcorticalareasexhibitedwidegroup-leveldifferences (10of12ROIpairs,p<0.05FDRadjusted).

ThecorrelationmapsshowninSupplementaryFigure4show the findingsfromthecorrelationmatrices.Thecortico-corticalconnectivity patternappearedspatiallysimilarbetweenthegroups,buthippocampal

(6)

Fig.2. RepresentativeLFPsignalsundereachisoflu- raneperiodobtainedfromprimarysomatosensorycor- texfromananimalinthecontrol(A)andananimalin thetreatedgroup(B).Eachpanelshow2minoffil- teredLFPsignal.

andthalamicconnectivitydemonstratedspatialdifferencesbetweenthe groups.AfterFDRcorrection,however,nosignificantvoxel-wisediffer- encesremained.

3.4. fMRIpower

ThefMRIpowerspectraareshowninFig.5.Thecorticalpowerin- creasedsignificantlyduringthe2.0%(p=0.01)at0.01–0.15Hz.No statisticallysignificantdifferencesweredetectedinthepowerspectra ofthehippocampusineitherisofluraneperiod(p≥0.28).

3.5. LFPcoherence

LFPcoherence(1–30Hz)betweentheDGandS1RorS1Lisshown inFig.6.Intheisofluranetreatmentgroup,thecoherencebetweenthe DGandS1Rwasincreasedinthealpha(8–12Hz;p=0.037,FDRad- justed)andbetabands (12–30Hz;p= 0.027,FDRadjusted)during thefirst1.3%isofluraneperiod.Increases werealsoseenin thebeta band(p=0.049,FDRadjusted)duringthe2.0%isofluraneperiod.LFP coherencebetween theDGandS1L wasincreasedinthealphaband (p=0.015,FDRadjusted)duringthefirst1.3%isofluraneperiod.There werenosignificantdifferencesinLFPcoherencebetweentheCA1and S1R/S1L(p>0.05).

3.6. Geneexpression

Genesexhibitingsignificantlydifferent group-levelexpressionare showninTable1.Inthesomatosensorycortex,1.8%isofluranetreat- mentinducedsignificant(adjustedp-value<0.05)differentialexpres- sionof20genes:7showeddownregulatedexpressionand13showedup- regulatedexpression.Fold-changesvariedbetween−0.58to1.62,and averagefold-changewas|0.50|±0.08.Notably,nosignificantchanges ingeneexpressionweredetectedinthehippocampus.

4. Discussion

Theeffectsofanesthesiacanlastdaysandweeksbeyondtheanesthe- siatermination,whichhasimplicationsforexperimentaldesigninlab- oratoryanimalworkandforpatientcareinclinicalsettings.Themain

novelfindingofthepresentstudywasthatasingleisofluraneexposure induceslong-termnetwork-levelchangesinbrainfunctionalconnectiv- itythatlastatleast1month.Substantialchangesweredetectedinthe thalamo-corticalandhippocampal-corticalconnectivityobservedwith both fMRIandLFPtechniques.Thegeneexpressionfindings suggest thatthesefunctionalchangescouldbepotentiallyrelatedtoalterations inspecificionchannelsandsynapsesregulatingneuronaltransmission inthecortex.Thefunctionalconnectivitychangeswerenotlikelycaused bydifferencesintheanesthesiadepthbecausenogroup-leveldifferences weredetectedintheisoflurane-inducedBSoccurrencerate,durationof suppression,orburstamplitudes.

4.1. Functionalconnectivityunderisofluraneanesthesia

Isofluranemodulatesresting-statefunctionalconnectivitycompared withtheawakestateinrats(Liuetal.,2013a;Stenroosetal.,2018).

Under moderate isofluraneanesthesia, brain excitatory neurons are suppressedwhile inhibitory neuronalactivityis enhanced(deSousa et al., 2000; Dong et al., 2006), which may explain the altered resting-state functionalconnectivity. Underisofluraneconcentrations of 1.25%−2.0%, brain activity can shift toa BS state (Hudetz and Imas, 2007; Liuet al., 2011; Vincentet al., 2007) with alternating high-voltage peaks(bursts)andsilentstates(suppression)with little tonoelectricalactivity(Derbyshireetal.,1936).Oneexplanationfor thehyperexcitabilityduringBSiscompleteremovalofcorticalinhibi- tionbycorticalinterneurons(Ferronetal.,2009),leadingtounregu- lated neuronalfiringin thecortex.However,thebrainmayactively processinformationevenduringtheBSstatebyattemptingtorecover normalneuronaldynamicsduringtheburstphase(Chingetal.,2012; Japaridzeetal.,2015).Corticalburstsmaybeoriginatingbyrhythmic thalamocorticaloscillations(Steriadeetal.,1994;Zhangetal.,2019) orfrominternalbrainactivitysuchashippocampalgamma-oscillations (KroegerandAmzica,2007).

A hypersynchronized BS pattern is typicallyobserved in fMRIas highlystrengthenedcortico-corticalfunctionalconnectivity(Liuetal., 2013a; Paasonen et al., 2018; Pavel et al., 2015) whereas cortico- subcorticalfunctionalconnectivityis typicallysuppressed(Liuetal., 2011; Pawela et al., 2008). Our findings from fMRI and LFP mea-

(7)

Fig.3. Burstoccurrence rate(A), durationofburst suppression periods (B), and burst amplitudes(C). Burstandsuppressionepochsweredetectedwithan in-housemodified Matlab script FindRipples. Aver- agesforburstoccurrencerate(1/s),suppressionpe- riod(s)andamplitude(mV)werecalculatedforcorti- cal(leftandrightprimarysomatosensorycortex)and hippocampalregions(dentategyrusandCA1).Statisti- caltestingwasdonewithatwo-samplet-testwithFDR correctionformultiplecomparisons.n.s.=nostatisti- calsignificance.Valuesaregivenasthemean±SD.

surementsunderisofluraneanesthesia demonstratesimilarresults of widespread and strong cortico-cortical andmoderate cortico-striatal functionalconnectivityinfMRIwhilethehippocampal-corticalconnec- tivitywassuppressedonlyintheLFPdata.

Interestingly,whenminimizingtheimpactofBSactivityonfMRIsig- nalswithglobalsignalregression,highcortico-corticalfunctionalcon- nectivityin1.3%and2.0%isofluraneanesthesiaandmoderatecortico- striatalfunctionalconnectivityin2.0%isofluraneanesthesiawerestill preserved.This observationis consistent withprevious findings that functionalconnectivityisdetectedinthecortexandbetweenthecortex andsubcorticalstructuresevenafterregressingtheBSpatternfromthe fMRIsignal(Zhangetal.,2019).

4.2. Increasedfunctionalconnectivityinresponsetoisofluranetreatment

Functionalconnectivitychangesinthalamo-corticalnetworkswere detectedinresponsetoisofluranetreatment.Earlyexposureto1.5%

isofluraneisreportedtoprolongplasticitybyreducinginhibitoryand increasingexcitatorypostsynapticpotentialsinthereticularthalamic

nucleus,causingabnormalthalamo-corticaloscillations(Joksovicetal., 2015).Interestingly,inourstudy,acomparableconcentrationof1.8%

isofluranecausedprolongedchangesinfunctionalconnectivitybetween thethalamusandcortexthatweredetectableafter1month.Notably, 1monthafterisofluraneexposure,manyofthethalamo-corticalfunc- tionalconnectivitychangeswerestilldetectedwhenminimizingtheim- pactofBSactivitywithglobalsignalregression.Thissuggeststhatthe detectedfunctionalconnectivitychangesarenotonlyprominentunder aBSstate,butarealsopresentaspartoftheintrinsicbrainstatethat occursunderisofluraneanesthesia.

Althoughisofluranegenerallydecreaseshippocampal-corticalfunc- tionalconnectivity(Liangetal.,2015;Paasonenetal.,2018),preserved hippocampal-corticalfunctionalconnectivityhasbeenreportedtooc- curundertheBSstate(Liuetal.,2013b).Inourstudy,hippocampal- corticalfunctionalconnectivitywasstronglysuppressedinfMRIbutstill detectablewithLFP.Inresponsetoisofluranetreatment,hippocampal- corticalfunctionalconnectivitywasstrengthenedmoderatelyin1.3%

and2.0% anesthesiain both LFPandfMRI. This mayimply altered informationtransferbetweenthehippocampusandcortexinresponse

(8)

Fig.4. Thegroup-levelfunctionalconnectivity(A)anddifference(B)matricesobtainedfromisofluranetreatedandcontrolanimalsundereachisofluraneperiod. Statisticaltestingwasdonewithtwo-samplet-testwhileaccountingformultiplecomparisons(FDR).=FDR-adjustedp-values<0.05.AC,auditorycortex;HC, hippocampus;HTH,hypothalamus;mFC,medialfrontalcortex;ThM,medialthalamus;MC,motorcortex;Nacc,nucleusaccumbens;RSC,retrosplenialcortex;SC, somatosensorycortex;Str,striatum;ThVL,ventrolateralthalamus;VC,visualcortex.

Fig.5. fMRIspectralpowerincortex(A)andhippocampus(B)ineachisofluraneperiod.(A)Averagepowerfromtheleftandrightprimarysomatosensorycortices areshown.(B)AveragehippocampalpowercalculatedfromdentategyrusandCA1.Statisticaltestingbetweenthegroupswasdonewithatwo-samplet-test(whole 0.01–0.15Hzfrequencyrange).p=0.05.Valuesaregivenasthemean±SD.

toisofluranetreatment.Multiplestudiesreportprolongedmemoryor learningimpairments severalweekstomonthsafter2–4 hisoflurane treatment(Culleyetal.,2004;LinandZuo,2011;Stratmannetal.,2009; Uchimotoetal.,2014;Zhangetal.,2014;Zhongetal.,2015),which couldindicatemodulatedhippocampal-corticalfunction.Interestingly, functionalconnectivitychangesinourstudyweredetectablewithina comparabletimewindowof 1month.Severalstudiesreportedapop-

tosisorneuroinflammationin thehippocampusinresponsetoisoflu- rane treatment(Caoetal., 2012;Ge etal.,2015; Kongetal.,2013; Zhangetal.,2015),andthereforetheexactmechanismforpotential behavioralconsequencesofincreasedhippocampal-corticalfunctional connectivityfoundinthisstudyremainsunclear.

Reduced neural inhibition by GABA antagonists acutely in- creaseslong-rangecorticalandcortico-striatalfunctionalconnectivity

(9)

Fig.6.Localfieldpotentialcoherencebetweenrightdentategyrusandright(A)orleft(B)primarysomatosensorycortices.Valuesfromeachfrequencyband(delta, theta,alpha,beta)weresummatedseparately,andbandsweresubsequentlycomparedbetweenthetreatmentgroups.Statisticaltestingwasdonebytwo-sample t-testwhileaccountingformultiplecomparisons.Weusedfalsediscoveryrate(FDR)toaccountformultiplecomparisons.=FDR-adjustedp-values<0.05.S1, primarysomatosensorycortex;DG,dentategyrus.Valuesaregivenasthemean±SD.

Table1

Isofluranetreatment(1.8%)inducedanupregulation(positivefoldchange)ordownregulation(negativefoldchange)ofcorticalgenesthatwasobserved 1monthlater.

Ensembl gene ID RGD gene ID Description Unadjusted p-value Adjusted p-value LOG2 fold change ENSRNOG00000015393 Slc32a1 Solute carrier family 32 member 1 2.523E 08 0.000 0.215

ENSRNOG00000020346 Best1 Bestrophin 1 4.044E 07 0.003 1.104

ENSRNOG00000008337 Gjd2 Gap junction protein, delta 2 1.910E 06 0.007 0.584

ENSRNOG00000058739 Snn Stannin 1.914E 06 0.007 0.172

ENSRNOG00000029262 - 4.230E 06 0.013 0.004

ENSRNOG00000014303 Lrp11 LDL receptor related protein 11 8.569E 06 0.016 0.107 ENSRNOG00000026604 Cercam Cerebral endothelial cell adhesion molecule 8.312E 06 0.016 0.732 ENSRNOG00000031766 Mt-cyb Mitochondrially encoded cytochrome b 7.751E 06 0.016 0.733 ENSRNOG00000019598 Vegfa Vascular endothelial growth factor A 1.152E 05 0.017 0.255

ENSRNOG00000057498 - Long non-coding RNA 1.071E 05 0.017 0.567

ENSRNOG00000006639 Scn9a Sodium voltage-gated channel alpha subunit 9 1.362E 05 0.018 1.620 ENSRNOG00000009661 Tgds TDP-glucose 4,6-dehydratase 1.618E 05 0.020 0.390 ENSRNOG00000009039 Trappc12 Trafficking protein particle complex 12 1.852E 05 0.021 0.341 ENSRNOG00000009156 Tra2a Transformer 2 alpha homolog 2.131E 05 0.023 0.441 ENSRNOG00000007034 Hipk2 Homeodomain interacting protein kinase 2 2.642E 05 0.026 0.588

ENSRNOG00000025075 Relt RELT, TNF receptor 3.167E 05 0.029 0.391

ENSRNOG00000005641 Fbxl4 F-box and leucine-rich repeat protein 4 3.507E 05 0.031 0.229

ENSRNOG00000053070 - Long non-coding RNA 4.688E 05 0.039 0.488

ENSRNOG00000020250 Pcgf6 Polycomb group ring finger 6 6.551E 05 0.049 0.462 ENSRNOG00000032902 Ybx1-ps3 Y box protein 1 related, pseudogene 3 6.294E 05 0.049 0.615

(Nasrallahetal.,2017).Intheirstudy,theauthorsfoundincreasedfunc- tionalconnectivitybasedonbothfMRIconnectivityandEEGcoherence, andincreasedBOLDandevokedpotentialsinresponsetoforepawstimu- lation.Consistently,inthepresentstudy,onecortico-striatalconnection showedincreasedfunctionalconnectivityinfMRIandthecortexshowed increasedBOLDpower,2featuresthatpointtoincreasedneuralexcita- tion.Furthermore,partofourgeneexpressionresults(discussedbelow) suggestreducedneuralinhibition.Thispartoftheresultremainsuncon- clusive,however,because,onthebasisofLFPpower(datanotshown) orburstamplitude,neuralexcitationwasnotincreased.

Inadditiontotheneuronalconsequencesofisofluraneanesthesia, isofluranechangesregionalbloodflow(Hansenetal.,1988),andin- ducesincreasedblood-brainbarrierpermeabilityinthethalamusand cortex(Tétraultetal.,2008),potentiallyleadingtovasogenicedema and/orinflammatoryresponses,whichinturncanaltertissueexcitabil- ity(SchoknechtandShalev,2012)thatmaybereflectedinfunctional connectivity1monthlater.Theresultsof ourgeneexpressionanaly- sis,however,didnotdirectlysupportaninflammatoryresponse-related cascade.

4.3. Modulatedsignaltransmissionsuggestedbygeneexpressionfindings

Inthepresentstudy,5ofthe20geneswithisoflurane-modulatedcor- ticalexpressionbelongtothesamegeneclassesidentifiedearlierasex- hibitingshort-termisoflurane-inducedmodulation(Buntingetal.,2015; Culleyetal.,2006;Dingetal.,2017;Edmandsetal.,2013;Lowesetal., 2017;Zureketal., 2014).Threegenesbelongtothesignaltransmis- sionclass(soluteCarrierfamily32member1[Slc32a1],bestrophin1 [Best1],andsodiumvoltage-gatedchannelalphasubunit9[Scn9a]),1 (homeodomaininteractingproteinkinase2[Hipk2])toproteinkinase class,and1(stannin[Snn])tothebitopicproteinclass.

Isoflurane-inducedchangesintheexpressionofsignaltransmission classgenescouldpotentiallybethemaincontributortothelong-term functionalconnectivitychangesobserved here.Slc32a1codesforthe vesicularinhibitoryaminoacidtransporter,whichisanintegralneu- ronal membrane protein involved in GABAand glycine uptakeinto synapticvesicles(McIntireetal.,1997).Theproteinisneededforef- ficientGABAtransmission,anditsreducedexpressionleadstoglobal inhibitiondeficiencies.Best1isacalcium-activatedanionchannelex-

(10)

pressedinastrocytesthatactsasachloridetransporter,butalsoasa glutamatetransporter(OhandLee,2017).Interestingly,astrocyticglu- tamate transportationmayincrease duringBS anesthesia, leadingto diminishedcorticalinhibitionviacorticalinterneurons(Ferronetal., 2009).Notably,inourstudy,initialtreatmentwith1.8%isofluranecon- centrationalsocausestheBSphenomenon.Finally,thescn9agenecodes fora voltage-dependentsodiumchannel (Klugbaueretal., 1995) in- volvedinthegenerationofactionpotentials(Renganathanetal.,2001).

Inourstudy,1monthaftertheisofluranetreatment,slc32a1expres- sionwasdecreased0.2-fold,best1wasincreased1.1-fold,andscn9awas increased1.6-foldinthecortex.Thesegeneexpressionchangessuggest reducedglobalinhibitionandcorticalinhibition,andincreasedgenera- tionofactionpotentials,andthuspotentiallycontributetothechanges detectedinfunctionalconnectivityandinfMRIpowerinthecortexof isoflurane-treatedanimals.Interestingly,wealsofoundchangesinthe expressionofgapjunctiondelta2gene.Gapjunctiondelta2isinvolved in gapjunction-mediatedsignal transmission,andcontributes tothe generationof micromechanical-inducedburstingactivityorin home- ostaticplasticity(KroegerandAmzica,2007).

Othergenesnotrelatedtosignaltransmission,butthatcouldcon- tribute toisoflurane-mediated effects are Hipk2 andSnn. Hipk2en- codesaconservedserine/threoninekinaseandishighlyexpressedin thebrain(Kimetal.,1998;Wangetal.,2001).Hipk2-encodingkinases canactincaspase-mediatedsignalpathways,leadingtoneuronalapop- tosis(Doxakisetal.,2004).Increasedneuronalapoptosisinresponseto isofluraneanesthesiahasbeenreportedinmanycellandanimalstud- iesinvestigatingtheshort-termconsequencesofisofluraneanesthesia (Colonetal.,2017).The0.6-foldincreasedexpressionofHlpk2inthe presentstudysuggestsincreasedapoptoticactivity1month afterthe isofluranetreatment.Further,wefounda0.2-folddecreaseinthecor- ticalexpressionofSnn,whichcodesforaproteinthatmayhavearole in theselectivetoxicity oforganotins (Davidson etal.,2004). Possi- blemechanismsofHipk2andSnncontributingtothelong-termeffects ofisofluraneonfunctionalconnectivity,however,remaintobedeter- mined.

4.4. Physiologicandmethodologicconsiderations

As physiologic parameters were not measured during the initial isofluranetreatment,wecannotruleoutthepotentialeffectofrespi- ratorydepressioncausinghypoxiaontheresults.Weusedpractically identicalanestheticconditionsin ourpreviousstudies,however,and demonstratedthatanimalsareneitherhypoxicnorhypercarbicbased onbloodgasmeasurements(Jokivarsietal.,2009).Inadditiontoini- tialisofluranetreatment,weperformedourmeasurementsduringisoflu- rane anesthesia.As isofluranepotentiallyinduces slight hypercapnia andincreasesbasalbloodflow,carefulattentionwaspaidtoensurethat normalphysiologicconditionsweremaintainedasmuchaspossiblein eachanimal.Additionally,isofluranecanmaskintrinsicconnectivityby inducingBSactivity,whichwascarefullycontrolledbyobservingthe group-levelburstingparametersandanalyzingthedatawithandwith- outtheglobalsignalregression.

IntheMRImeasurements,weusedSE-EPIforfunctionalimaging.

AlthoughSE-EPIhashigherspatial specificity,itsuffersfrom poorer functionalcontrastcomparedwithgradientecho-EPI,whichcanlimit thesensitivityfordetectingfunctionalnetworks.

Thepresentstudywasconductedwithonlyasingleisofluranetreat- mentsessionusing aspecificconcentration(1.8%), afixed exposure time(3h),andasinglewaitingperiodbetweentheisofluranetreatment andthereadouts.Interestingly, Orsiniandco-workers (Orsiniet al., 2018) demonstrated increased corticalconnectivity at 1 month,but notafter2weeks,following0.5%isoflurane/medetomidineanesthesia.

Clearly,additionalstudiesareneededtoevaluatefunctionalchangesin responsetodifferentisofluraneconcentrations,exposuretimes,andvar- iousreadoutpointsafterthetreatment.Otherfuturedirectionsinvolve studyingtheagedependenceofanesthesiaeffects,astheinfluenceof

anesthesiaisofprimaryimportancetoearly-lifeinfantsandintheaged population(Colonetal.,2017).

MostofthesignificantfMRIconnectivitychangesweredetecteddur- inganesthesiawith2.0%isoflurane,althoughsimilartrendsofchanged connectivitywerealsoobservedduringanesthesiawith1.3%isoflurane.

AsmostofthefMRIstudiesareconductedataloweranesthesiadosing than2.0%,thechangesmaynothaveasignificanteffecton readout parameterswiththecurrentsamplesize.

DifferentpreparationstepsintheLFPgroupledto~70minlonger initialanesthesiadurationcomparedwiththefMRIgroup.Longerisoflu- raneexposureduringanimalpreparationbeforescanningcanalterfunc- tionalconnectivity(Magnusonetal.,2014).Therefore,slightdifferences betweentheLFPandfMRIconnectivityresultscouldarisefromdifferent preparationtimesbetweenthegroups.

The geneexpressionfindings werebased on onlyone technique, namelyRNA-seq.Although RNA-seqfindings areoftenconfirmedby qPCR,theRNA-seqtechniquebyitselfhaslowtechnicalvariabilityand isahighlyquantitativetechnique(Wangetal.,2009).RNA-seqresults provide abroaderviewofthegeneexpression,however,whencom- paredwithqPCR.Therefore,moreweightshouldbegiventotheob- servedgeneclassesinsteadofindividualgenes.Also,itshouldbenoted that mRNAexpressiondoesnot directlyimply change inprotein ex- pressionascompensationmechanismsmayalsooccur(El-Brolosyand Stainier,2017).

5. Conclusions

Ourfunctionalconnectivity,electrophysiological,andgeneexpres- sionfindingsindicatethatasinglelong1.8%isofluraneexposure,deep enoughtocauseBSactivity,haslong-termeffectsonbrainfunctionthat lastatleast1month.Thiswassupportedbythefindingsofincreased hippocampal-corticalandthalamo-corticalfunctionalconnectivity,in- creasedcorticalfMRIsignalpower,expressionchangesin genesthat promoteneuroplasticity,andneuronalsignaltransmissionmechanisms.

Duringthemeasurements,nochangeswereseeninestablishedmeasures ofthedepthofanesthesia,theburstoccurrencerate,suppressiondura- tion,orburstamplitude,andthereforetheobservedalterationsinbrain functionlikely reflectneuralnetworkplasticity ratherthanachange inthedepthofanesthesiaexperiencedbytheanimalduringthemea- surements.Inadditiontoprovidinginsightsintocellular-levelandfunc- tionalisoflurane-inducedchangesinthebrain,ourresultsareimportant forpreclinicallaboratoriesusingisofluraneanesthesiaandconducting follow-upfunctionalconnectivitystudies,astheobservedeffectsmay influencethestudydesign.

Creditauthorstatement

Petteri Stenroos: Conceptualization, Methodology, Investigation, Writing-OriginalDraft,Writing-Review&Editing,Visualization

Tiina Pirttimäki:Conceptualization, Methodology, Investigation, Writing-Review&Editing

JaakkoPaasonen:Investigation,Writing-OriginalDraft,Writing- Review&Editing,Supervision

EkaterinaPaasonen:Software,Formalanalysis RaimoASalo:Software,Formalanalysis HennariikkaKoivisto:Investigation TeemuNatunen:Methodology PetraMäkinen:Investigation

TeemuKuulasmaa:Software,Formalanalysis

MikkoHiltunen:Methodology,Resources,Writing-Review&Edit- ing,Fundingacquisition

Heikki Tanila: Conceptualization, Methodology, Validation, Re- sources,Writing-Review&Editing,Supervision,Fundingacquisition

OlliGröhn:Conceptualization,Methodology,Validation,Resources, Writing-OriginalDraft,Writing-Review&Editing,Supervision,Project administration,Fundingacquisition

(11)

DeclarationofCompetingInterest None.

Acknowledgments

WeliketothankMaaritPulkkinenfortechnicalassistancein ani- malpreparations.ThisstudywassupportedbyFinnishFunctionalGe- nomicsCentre,UniversityofTurku,ÅboAkademiUniversityandBio- centerFinland.MRIwasdoneinBiomedicalImagingUnitcorefacility, UniversityofEastern Finland,Finland.Geneexpressiondataanalysis wascarriedoutwiththesupportofUEFBioinformaticsCenter,Univer- sityofEasternFinland,Finland.ThisworkwassupportedbyAcademy ofFinland(grant numbers298007,307866);Sigrid JuséliusFounda- tion;theStrategicNeuroscience FundingoftheUniversityof Eastern Finland;andtheDoctoralPrograminMolecularMedicineofUniversity ofEasternFinland.Thefundingsourceshadnoroleinstudydesignor inthecollection,analysis,orinterpretationofdata.

Dataandcodeavailabilitystatements

Original data of this study are available at Mendeley Data (http://dx.doi.org/10.17632/wxftdp4n6x.1).In-housemodifiedscripts areavailablefromthecorrespondingauthorbyemail.

Supplementarymaterials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.neuroimage.2021.117987.

References

Biswal, B., Zerrin Yetkin, F., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn. Reson. Med.

34, 537–541. doi: 10.1002/mrm.1910340409 .

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. doi: 10.1093/bioinformatics/btu170 . Bray, N.L., Pimentel, H., Melsted, P., Pachter, L., 2016. Near-optimal probabilistic RNA-

seq quantification. Nat. Biotechnol. 34, 525–527. doi: 10.1038/nbt.3519 .

Briner, A., De Roo, M., Dayer, A., Muller, D., Habre, W., Vutskits, L., 2010.

Volatile anesthetics rapidly increase dendritic spine density in the rat me- dial prefrontal cortex during synaptogenesis. Anesthesiology 112, 546–556.

doi: 10.1097/ALN.0b013e3181cd7942 .

Brown, E.N., Lydic, R., Schiff, N.D., 2010. General anesthesia, sleep, and coma. N. Engl.

J. Med. doi: 10.1056/NEJMra0808281 .

Brown, E.N., Purdon, P.L., Van Dort, C.J., 2011. General anesthesia and altered states of arousal: a systems neuroscience analysis. Ann. Rev. Neurosci. 34, 601–628.

doi: 10.1146/annurev-neuro-060909-153200 .

Bunting, K.M., Nalloor, R.I., Vazdarjanova, A., 2015. Influence of isoflurane on immediate-early gene expression. Front. Behav. Neurosci. 9, 363. doi: 10.3389/fn- beh.2015.00363 .

Cao, L., Li, L., Lin, D., Zuo, Z., 2012. Isoflurane induces learning impairment that is mediated by interleukin 1 𝛽in rodents. PLoS One 7, e51431. doi: 10.1371/jour- nal.pone.0051431 .

Ching, S.N., Purdon, P.L., Vijayan, S., Kopell, N.J., Brown, E.N., 2012. A neurophysiological-metabolic model for burst suppression. Proc. Natl. Acad.

Sci. U. S. A. 109, 3095–3100. doi: 10.1073/pnas.1121461109 .

Colon, E., Bittner, E.A., Kussman, B., McCann, M.E., Soriano, S., Borsook, D., 2017. Anes- thesia, brain changes, and behavior: insights from neural systems biology. Prog. Neu- robiol. doi: 10.1016/j.pneurobio.2017.01.005 .

Culley, D.J., Baxter, M.G., Crosby, C.A., Yukhananov, R., Crosby, G., 2004. Im- paired acquisition of spatial memory 2 weeks after isoflurane and isoflurane- nitrous oxide anesthesia in aged rats. Anesth. Analg. 99, 1393–1397.

doi: 10.1213/01.ANE.0000135408.14319.CC .

Culley, D.J., Yukhananov, R.Y., Xie, Z., Gali, R.R., Tanzi, R.E., Crosby, G., 2006. Altered hippocampal gene expression 2 days after general anesthesia in rats. Eur. J. Pharma- col. 549, 71–78. doi: 10.1016/J.EJPHAR.2006.08.028 .

Davidson, C.E., Reese, B.E., Billingsley, M.L., Yun, J.K., 2004. Stannin, a protein that local- izes to the mitochondria and sensitizes NIH-3T3 cells to trimethyltin and dimethyltin toxicity. Mol. Pharmacol. 66, 855–863. doi: 10.1124/mol.104.001719 .

de Sousa, S.L.M., Dickinson, R., Lieb, W.R., Franks, N.P., 2000. Contrasting synaptic ac- tions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 92, 1055–1066. doi: 10.1097/00000542-200004000-00024 .

Derbyshire, A.J., Rempel, B., Forbes, A., Lambert, E.F., 1936. The effects of anesthetics on action potentials in the cerebral cortex of the cat. Am. J. Physiol. Content 116, 577–596. doi: 10.1152/ajplegacy.1936.116.3.577 .

Ding, X.Y. , Xue, R.L. , Niu, X.L. , Gao, Y.F. , Gu, R. , Wu, X.M. , Zhang, H.Q. , Liu, X.G. , Gao, Y. , 2017. Effect of isoflurane on related gene expression in hippocampus of rats. Biomed.

Res. 28, 5546–5550 .

Dong, H., Fukuda, S., Murata, E., Higuchi, T., 2006. Excitatory and inhibitory actions of isoflurane on the cholinergic ascending arousal system of the rat. Anesthesiology 104, 122–133. doi: 10.1097/00000542-200601000-00018 .

Doxakis, E., Huang, E.J., Davies, A.M., 2004. Homeodomain-interacting protein kinase-2 regulates apoptosis in developing sensory and sympathetic neurons. Curr. Biol. 14, 1761–1765. doi: 10.1016/j.cub.2004.09.050 .

El-Brolosy, M.A., Stainier, D.Y.R., 2017. Genetic compensation: a phenomenon in search of mechanisms. PLoS Genet doi: 10.1371/journal.pgen.1006780 .

Edmands, S.D., Ladow, E., Hall, A.C., 2013. Microarray analyses of genes regulated by isoflurane anesthesia in vivo : a novel approach to identifying potential preconditioning mechanisms. Anesth. Analg. 116, 589–595. doi: 10.1213/ANE.0b013e31827b27b0 . Erasso, D.M., Camporesi, E.M., Mangar, D., Saporta, S., 2013. Effects of isoflurane or

propofol on postnatal hippocampal neurogenesis in young and aged rats. Brain Res 1530, 1–12. doi: 10.1016/j.brainres.2013.07.035 .

Ferron, J.-.F., Kroeger, D., Chever, O., Amzica, F., 2009. Cortical Inhibition during Burst Suppression Induced with Isoflurane Anesthesia. J. Neurosci. 29, 9850–9860.

doi: 10.1523/JNEUROSCI.5176-08.2009 .

Ge, H.W., Hu, W.W., Ma, L.L., Kong, F.J., 2015. Endoplasmic reticulum stress pathway mediates isoflurane-induced neuroapoptosis and cognitive impairments in aged rats.

Physiol. Behav. 151, 16–23. doi: 10.1016/j.physbeh.2015.07.008 .

Haensel, J.X., Spain, A., Martin, C., 2015. A systematic review of physiological meth- ods in rodent pharmacological MRI studies. Psychopharmacology 232, 489–499.

doi: 10.1007/s00213-014-3855-0 .

Hansen, T.D., Warner, D.S., Todd, M.M., Vust, L.J., Trawick, D.C., 1988. Distribution of cerebral blood flow during halothane versus isoflurane anesthesia in rats. Anesthesi- ology 69, 332–337. doi: 10.1097/00000542-198809000-00008 .

Hudetz, A.G., Imas, O.A., 2007. Burst activation of the cerebral cortex by flash stimuli during isoflurane anesthesia in rats. Anesthesiology 107, 983–991.

doi: 10.1097/01.anes.0000291471.80659.55 .

Ii, R.P.L., Aroniadou-anderjaska, V., Prager, E.M., Pidoplichko, V.I., Figueiredo, T.H., Braga, M.F.M., 2016. Repeated isoflurane exposures impair long-term potentiation and increase basal GABAergic activity in the basolateral amygdala. Neural Plast 2016, 8524560. doi: 10.1155/2016/8524560 .

Japaridze, N., Muthuraman, M., Reinicke, C., Moeller, F., Anwar, A.R., Mideksa, K.G., Pressler, R., Deuschl, G., Stephani, U., Siniatchkin, M., 2015. Neuronal networks during burst suppression as revealed by source analysis. PLoS One 10, e0123807.

doi: 10.1371/journal.pone.0123807 .

Jokivarsi, K.T., Niskanen, J.P., Michaeli, S., Gröhn, H.I., Garwood, M., Kauppinen, R.A., Gröhn, O.H., 2009. Quantitative assessment of water pools by T1 𝜌and T 2 𝜌MRI in acute cerebral ischemia of the rat. J. Cereb. Blood Flow Metab. 29, 206–216.

doi: 10.1038/jcbfm.2008.113 .

Joksovic, P.M., Lunardi, N., Jevtovic-Todorovic, V., Todorovic, S.M., 2015. Early exposure to general anesthesia with isoflurane downregulates inhibitory synap- tic neurotransmission in the rat thalamus. Mol. Neurobiol. 52, 952–958.

doi: 10.1007/s12035-015-9247-6 .

Jonckers, E., Shah, D., Hamaide, J., Verhoye, M., Van der Linden, A., 2015. The power of using functional fMRI on small rodents to study brain pharmacology and disease.

Front. Pharmacol. doi: 10.3389/fphar.2015.00231 .

Kim, Y.H., Choi, C.Y., Lee, S.J., Conti, M.A., Kim, Y., 1998. Homeodomain-interacting pro- tein kinases, a novel family of co-repressors for homeodomain transcription factors.

J. Biol. Chem. 273, 25875–25879. doi: 10.1074/jbc.273.40.25875 .

Klugbauer, N., Lacinova, L., Flockerzi, V., Hofmann, F., 1995. Structure and func- tional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J 14, 1084–1090.

doi: 10.1002/j.1460-2075.1995.tb07091.x .

Kodama, M., Satoh, Y., Otsubo, Y., Araki, Y., Yonamine, R., Masui, K., Kazama, T., 2011.

Neonatal desflurane exposure induces more robust neuroapoptosis than do isoflu- rane and sevoflurane and impairs working memory. Anesthesiology 115, 979–991.

doi: 10.1097/ALN.0b013e318234228b .

Kong, F., Chen, S., Cheng, Y., Ma, L., Lu, H., Zhang, H., Hu, W., 2013. Minocycline At- tenuates Cognitive Impairment Induced by Isoflurane Anesthesia in Aged Rats. PLoS One 8, e61385. doi: 10.1371/journal.pone.0061385 .

Kroeger, D., Amzica, F., 2007. Hypersensitivity of the anesthesia-induced comatose brain.

J. Neurosci. 27, 10597–10607. doi: 10.1523/JNEUROSCI.3440-07.2007 .

Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Meth- ods 9, 357–359. doi: 10.1038/nmeth.1923 .

Liang, Z., Liu, X., Zhang, N., 2015. Dynamic resting state functional con- nectivity in awake and anesthetized rodents. Neuroimage 104, 89–99.

doi: 10.1016/j.neuroimage.2014.10.013 .

Lin, D., Zuo, Z., 2011. Isoflurane induces hippocampal cell injury and cog- nitive impairments in adult rats. Neuropharmacology 61, 1354–1359.

doi: 10.1016/j.neuropharm.2011.08.011 .

Liu, X., Zhu, X.H., Zhang, Y., Chen, W., 2013a. The change of functional connectivity specificity in rats under various anesthesia levels and its neural origin. Brain Topogr doi: 10.1007/s10548-012-0267-5 .

Liu, X., Zhu, X.H., Zhang, Y., Chen, W., 2013b. The change of functional connectivity specificity in rats under various anesthesia levels and its neural origin. Brain Topogr 26, 363–377. doi: 10.1007/s10548-012-0267-5 .

Liu, X., Zhu, X.H., Zhang, Y., Chen, W., 2011. Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb. Cortex 21, 374–384. doi: 10.1093/cercor/bhq105 .

Love, M.I., Huber, W., Anders, S., 2014. Moderated estimation of fold change

Viittaukset

LIITTYVÄT TIEDOSTOT

In line with the animal studies, in our Studies I, II, and III, all significant changes in brain activation were observed within the first month after stroke: the size of

The activities of MMPs are regulated at multiple levels including gene expression, secretion and binding to the cell surface or ECM, proteolytic activation, and inhibition by TIMPs

Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss.

is the unique ability to probe changes in excitability, connectivity, as well as global plasticity of intracortical circuits in specific brain areas (particularly motor and

1) In neuronal culture, the expression levels of p62 mRNA and protein are prominently upregulated in response to pro-apoptotic conditions and proteasomal inhibition. At least in

Sähköisen median kasvava suosio ja elektronisten laitteiden lisääntyvä käyttö ovat kuitenkin herättäneet keskustelua myös sähköisen median ympäristövaikutuksista, joita

These gene expression changes suggest reduced global inhibition and cortical inhibition, and increased genera- tion of action potentials, and thus potentially contribute to the

is the unique ability to probe changes in excitability, connectivity, as well as global plasticity of intracortical circuits in specific brain areas (particularly motor and