Tutkimuksessa havaittiin, että korkeintaan 1 autovasta-aineelle positiivisilla potilailla oli pienempi perusinsuliinin tarve kuin useammille autovasta-aineille positiivisilla potilailla. Tämä johtuu todennäköisesti siitä, että useammat autovasta-aineet liittyvät nopeampaan beetasolujen tuhoon, jolloin potilaan oma insuliinin tuotto heikentyy nopeammin ja lopulta kokonaan. Lisäksi potilaan sokeritasapaino on parempi diagnoosihetkellä ja 6 kuukauden aikapisteessä, jos tämä on positiivinen enintään yhden autovasta-aineen suhteen. Voidaan siis sanoa, että 0 tai 1 autovasta-aineelle positiivisilla potilailla on odotettavissa ainakin hieman kevyempi taudin alkuvaihe insuliiniannostelun suhteen. Jos potilaalla on diagnoosihetkellä useita autovasta-aineita veressä, hänen tautinsa on todennäköisesti aggressiivisempi kuin niillä, jotka ovat positiivisia korkeintaan 1 vasta-aineen suhteen. (taulukko 3)
Samankaltaisia päätelmiä on tehty hiljattain tehdyssä tutkimuksessa, jossa potilaiden taudin kulkua tarkasteltiin diagnoosin jälkeen seuraavan kahden vuoden ajan (Karjalainen ym. 2015).
Tutkimuksessa todettiin, että useat diabetesautovasta-aineet johtavat kiihtyneeseen beetasolutuhoon ja suurentuneeseen insuliinin tarpeeseen. Samat johtopäätökset voidaan tämän tutkimuksen perusteella tehdä myös seuraavista vuosista, viiteen vuoteen asti.
Tutkimuksen potilaista vain 19 prosentilla todettiin ketoasidoosi diagnoosihetkellä. Tämä on hyvin positiivinen tulos, sillä erään tutkimuksen mukaan noin 30 prosentilla todetaan ketoasidoosi (Albanese-O’Neill ym. 2012). Voidaan siis olettaa, että ainakin tämän tutkimuksen perusteella alueen diabetestapaukset löydetään useimmiten hyvissä ajoin, eikä ketoasidoosia pääse kehittymään kovin monille.
Yhdellä autovasta-ainenegatiivisella potilaalla tiedetään olevan insuliinigeenimutaation aiheuttama diabetes. Hänen diabeteksensa taustalla ei siis ole autoimmuunivälitteinen tyypin 1 diabetes, vaan beetasolutuho on aiheutunut siksi, että väärin laskostunut insuliini on aiheuttanut solun apoptoosin.
Kahden muun autovasta-ainenegatiivisen potilaan diabeteksen tyypistä ei tällä hetkellä ole tietoa, mutta heitä on hoidettu tyypin 1 diabeteksen mukaisesti. Heillä saattaa olla MODY, mutta sen tarkempaa luokitusta ei voida ratkaista tämän tutkimuksen tietojen perusteella. Jotta heidän diabetestyyppinsä voitaisiin määritellä lopullisesti, tarvittaisiin jatkotutkimuksia.
Tutkimuksessa löydettiin vain kolme autovasta-ainenegatiivista potilasta tutkimuksen 204 potilaasta.
Muiden potilaiden taudinkuva sopii hyvin tyypin 1 autoimmuunivälitteiseen diabetekseen. Siten ainakaan montaa potilasta ei ole luokiteltavissa muuhun diabeteksen tyyppiin.
Tutkimus edustaa melko hyvin, muttei täysin, Kuopion yliopistollisen sairaalan hoidossa olevia tyypin 1 diabeetikkoja. Aivan kaikkien potilaiden autovasta-ainetietoja ei ollut saatavilla, sillä kaikki potilaat perheineen eivät ole antaneet lupaa autovasta-aineiden tutkimiseen. Toisaalta tutkittujen potilaiden osalta tutkimusaineisto on erittäin kattava, mikä lisää tutkimuksen luotettavuutta. Vain joitakin arvoja ei ollut saatavilla potilaskertomuksista.
LÄHTEET
Achenbach P, Koczwara K, Knopff A, Naserke H, Ziegler AG, Bonifacio E. Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J Clin Invest 2004;114:589-597.
Albanese-O’Neill A, Gan M, Haller M. Type 1 Diabetes: Current Concepts in Epidemiology, Pathophysiology, Clinical Care, and Research. Curr Probl Pediatr Adolesc Health Care 2012;42:269-291.
Akirav E, Kushner JA, Herold KC. Beta-cell mass and type 1 diabetes: going, going, gone? Diabetes 2008;57: 2883–8.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009;32:S62-67.
Atkinson M, Fisk D, Maclaren N, Riley W, Spillar R, Winter W. Are insulin autoantibodies markers for insulin-dependent diabetes mellitus? Diabetes 1986;35:894-8.
Atkinson MA, Maclaren NK, Holmes L, Scharp DW, Lacy PE, Riley WJ. The natural history and predictive value of Mr 64,000 autoantibodies for insulin-dependent diabetes mellitus. J Autoimmun 1990;3:41-5.
Atkinson M, Gale EAM. Infant diets and type 1 diabetes: too early, too late, or just too complicated?
JAMA 2003;290:1771-2.
Atkinson M, Haller M, Schatz D. Type 1 diabetes mellitus: Etiology, Presentation, and Management.
Pediatr Clin N Am 2005;52:1553-78.
Bailey CC ym. The national diabetic retinopathy laser treatment audit. III. Clinical outcomes. Eye (Lond) 1999;13:151–9.
Bennett ST, Lucassen AM, Gough SC ym. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 1995;9:284-292.
Blackett PR. Insulin pump treatment for recurrent ketoacidosis in adolescence [letter]. Diabetes Care 1995: 18: 881–882.
Boehm B, Leslie R, Merger S. The broad clinical phenotype of Type 1 diabetes at presentation.
Diabetic Medicine 2012;30:170-178.
Bonfanti R, Bognetti E, Meschi F. Residual beta-cell function and spontaneous clinical remission in type 1 diabetes mellitus: the role of puberty. Acta Diabetol 1998;35:91-5.
Bonifacio E, Scirpoli M, Kredel K, Fuchtenbusch M, Ziegler AG. Early autoantibody responses in prediabetes are IgG1 dominated and suggest antigen-specific regulation. J Immunol 1999;163:525-32.
Bottini N, Musumeci L, Alonso A ym. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004;36:337-8.
Bottini N, Vang T, Cucca F, Mustelin T. Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 2006;18:207-213.
Bowden SA, Duck MM, Hoffman RP. Young children (<5 yr) and adolescents (>12 yr) with type 1diabetes mellitus have low rate of partial remission: diabetic ketoacidosis is an important risk factor.
Pediatr Diabetes 2008; 9: 197–201.
Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004;53:2330-7.
Couper JJ, Haller MJ, Ziegler A-G, Knip M, Ludvigsson J, Craig ME. Phases of type 1 diabetes in children and adolescents. Pediatric Diabetes 2014: 15 (Suppl. 20): 18–25.
Craig M, Jefferies C, Dabelea D, Balde N, Seth A, Donaghue K. Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatric Diabetes 2014;15(20):4-17.
Daneman D, Clarson C. Residual beta-cell function in children with type 1 diabetes: measurement and impact on glycemic control. Clin Invest Med 1987;10:484-7.
Danne T, Battelino T, Jarosz-Chobot P etal. Establishing glycaemic control with continuous subcutaneous insulin infusion in children and adolescents with type 1 diabetes: experience of the PedPump Study in 17 countries. Diabetologia 2008;51:1594–1601.
Danne T, Aman J, Schober E et al. A comparison of postprandial and preprandial administration of insulin aspart in children and adolescents with type 1 diabetes. Diabetes Care 2003;26:2359–64.
Danne T, Bangstad H-J, Deeb L ym. Insulin treatment in children and adolescents with diabetes.
Pediatric Diabetes 2014: 15 (Suppl. 20): 115–134.
Decochez K, Keymeulen B, Somers G ym. Use of an islet cell antibody assay to identify type 1 diabetic patients with rapid decrease in C-peptide levels after clinical onset. Belgian diabetes registry.
Diabetes Care 2000;23:1072-8.
Deeb LC, Holcombe JH, Brunelle R et al. Insulin lispro lowers postprandial glucose in prepubertal children with diabetes. Pediatrics 2001;108:1175–9.
Donaghue KC, Wadwa RP, Dimeglio LA ym. Microvascular and macrovascular complications in children and adolescents. Pediatric Diabetes 2014;15:257–69.
DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. N Engl J Med 1993;329:977–86.
DPT-1 Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 2002;346:1685–91.
Edghill E, Dix R, Flanagan S, ym. HLA genotyping supports a nonautoimmune etiology in patients diagnosed with diabetes under the age of 6 months. Diabetes 2006;55:1895-8.
Fajans SS, Bell GI, Polonsky KS. Molecular mechanisms and clinical pathophysiology of maturity onset diabetes of the young. N Engl J Med 2001;345:971–980.
Gillespie KM, Gale EA, Bingley PJ. High familial risk and genetic susceptibility in early onset childhood diabetes. Diabetes 2002;51:210-4.
Gillespie K, Mehers K. The genetic basis for type 1 diabetes. British Medical Bulletin 2008;88:115-129.
Harjutsalo V, Sjöberg L, Tuomilehto J. Time trends in the incidence of type 1 diabetes in Finnish children: a cohort study. Lancet 2008;371:1777-82.
Hekkala A, Ilonen J, Knip M, Veijola R, Finnish Paediatric Diabetes R. Family history of diabetes and distribution of class II HLA genotypes in children with newly diagnosed type 1 diabetes: effect on diabetic ketoacidosis. Eur J Endocrinol. 2011;165(5):813-7.
Hämäläinen A, Knip M. Autoimmunity and familial risk of type 1 diabetes. Curr Diab Rep 2002;2:347-53.
Johnson SR, Cooper MN, Jones TW, Davis EA. Long-term outcome of insulin pump therapy in children with type 1 diabetes assessed in a large population-based case-control study. Diabetologia 2013;56:2392–2400.
Kapellen TM, Gausche R, Dost A et al. Children and adolescents with type 1 diabetes in Germany are more overweight than healthy controls: results comparing DPV database and CrescNet database.
J Pediatr Endocrinol Metab 2014; 27: 209–214.
Karjalainen J, Knip M, Mustonen A, Åkerblom H. Insulin autoantibodies at the clinical manifestation of Type 1 (insulin dependent) diabetes – a poor predictor of clinical course and antibody response to exogenous insulin. Diabetologia 1988;31:129-33.
Karjalainen J, Sabbah E, Savola K ym. Diabetes-Associated Autoantibodies in Relation to Clinical Characteristics and Natural Course in Children with Newly Diagnosed Type 1 Diabetes. J Clin Endocrinol Metab 2015;84(5):1534-9.
Kimpimäki T, Kulmala P, Savola K ym. Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 2002; 87:4572-9.
Klinke DJ 2nd. Extent of beta cell destruction is important but insufficient to predict the onset of type 1 diabetes mellitus. PLoS One 2008;3:e1374.
Knip M. Diabetekseen liittyvien autovasta-aineiden merkitys. DIPP/TEDDY/TrialNet (luettu 3.6.2015). http://dipp.utu.fi/index.php?mid=28&language=fi
Knip M, Ronkainen M, Savola K. Antibodies to GAD65 epitopes at diagnosis and over the first 10 years of clinical type 1 diabetes mellitus. Scand J Immunol 2004;59:334-40.
Krolewski AS ym. The changing natural history of nephropathy in type I diabetes. Am J Med 1985;78:785–94.
Kulmala P, Savola K, Petersen JS ym. Prediction of insulin-dependent diabetes mellitus in siblings of children with diabetes. J Clin Invest 1998;101:327-333.
Kupila A, Keskinen P, Simell T ym. Genetic risk determines the emergence of diabetes-associated autoantibodies in young children. Diabetes 2002;51:646-51.
Lan M, Notkins A. Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinomaDNA Cell Biol 1994;13:505-14.
Lauritzen T. Pharmacokinetic and clinical aspects of intensified subcutaneous insulin therapy. Dan Med Bull 1985;32: 104–118.
Lernmark Å, Regnéll S. Eringsmark. The environment and the origins of islet autoimmunity and Type 1 diabetes. Diabetic Medicine 2013;30:155-60.
Lévy-Marchal C, Patterson CC, Green A. Geographical variation of presentation at diagnosis of type 1 diabetes in children: The EURODIAB study. Diabetologia 2001;44:B75-80.
Libman IM, Pietropaolo , Trucco M, Dorman JS, LaPorte RE, Becker D. Islet cell autoimmunity in white and black children and adolescents with IDDM. Diabetes Care 1998;21:1824-7.
Liese AD, D’Agostino RB, Hamman RF ym. The burden of diabetes mellitus among US youth:
Prevalence estimates from the SEARCH for diabetes in youth study. Pediatrics 2006;118:1510-8.
Lombardo F, Valenzise M, Wasniewska M et al. Twoyear prospective evaluation of the factors affecting honeymoon frequency and duration in children with insulin dependent diabetes mellitus:
the key-role of age at diagnosis. Diabetes Nutr Metab 2002;15: 246–251.
Lyles S, Silverstein J, Rosenbloom A. Practical aspects of diabetes care. Peddiatric Endocrinology 2007;1:125-54.
Madsbad S, Krarup T, Faber O, Binder C, Regeur L. The transient effect of strict glycaemic control on B cell function in newly diagnosed type 1 (insulin-dependent) diabetic patients. Diabetologia 1982;22:16-20.
Manna R, Salvatore M, Scuderi F, et al. Negative correlation between ICA persistence and beta cell restoration after IDDM diagnosis. Diabetes Res 1988;9:101-3.
Mathieu C, Laureys J, Sobis H, Vandeputte M, Waer M, Bouillon R. 1,25-dihydroxyvitamin D3 prevents insulitis in NOD mice. Diabetes 1992;41:1491–5.
McIntosh ED, Menser MA. A fifty-year follow-up of congenital rubella. Lancet 1992: 340: 414–415.
Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat Rev Immunol 2008;8:685-98.
Muller K, Bendtzen K. Inhibition of human T lymphocyte proliferation and cytokine production by 1,25-dihydroxyvitamin D3. Differential effects on CD45RA+ and CD45R0+ cells. Autoimmunity 1992;14:37–43.
Nistico L, Buzzetti R, Pritchard LE ym. The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. Hum Mol Genet 1996;5:1075-80.
Niskanen L, Karjalainen J, Sarlund H, Siitonen O, Uusitupa M. Five-year follow-up of islet cell antibodies in type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 1991;34:402-8.
Norris JM, Barriga K, Klingensmith G ym. Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 2003;290:1713-20.
Norris JM, Yin X, Lamb MM ym. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. J Am Med Assoc 2007;298:1420-8.
Nosek L, Heinemann L, Kaiser M, Arnolds S, Heise T. No increase in the duration of action with rising doses of insulin aspart. Diabetes 2003;52(Suppl. 1):Abstract 551-P.
Oram RA, Jones AG, Besser RE et al. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia 2014;57: 187–191.
Ounissi-Benkalha H, Polychronakos C.The molecular genetics of type 1 diabetes: new genes and emerging mechanisms. Trends Mol Med 2008; 14:268-75.
Qu HQ, Montpetit A, Ge B, Hudson TJ, Polychronakos C. Toward further mapping of association between the IL2RA locus and type 1 diabetes. Diabetes 2007;56:1174-6.
Qu HQ, Marchand L, Grabs R, Polychronakos C. The association between the IFIH1 locus an type 1 diabetes. Diabetologia 2008;51:473-5.
Rewers MJ, Pillay K, de Beaufort C, Craig ME, Hanas R, Acerini CL, Maahs DM. Assessment and monitoring of glycemic control in children and adolescents with diabetes. Pediatric Diabetes 2014;15:102–114.
Risch N. Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet 1987;40:1-14.
Sabbah E, Savola K, Kulmala P ym. Diabetes-associated autoantibodies in relation to clinical characteristics and natural course in children with newly diagnosed type 1 diabetes: the Childhood Diabetes in Finland Study Group. J Clin Endocrinol Metab 1999;84:1534-9.
Sadauskaite –Kuehne V, Ludvigsson J, Padaiga Z, Jasinskiene E, Samuelsson U. Longer breastfeeding is an independent protective factor against development of type 1 diabetes mellitus in childhood. Diabete Metab Res Rev 2004;20:150-7.
Saha M-T. Lasten ja nuorten diabetes. Duodecim, Terveysportti 2010.
Seissler J, Scherbaum W. Autoimmune diagnostics in diabetes mellitus. Clin Chem Lab Med 2006;44(2):133-137.
Sherry N, Tsai E, Herold K. Natural History of β-Cell Function in Type 1 Diabetes. Diabetes 2005;54:32-39.
Siljander H, Knip M. Autovasta-aineet tyypin 1 diabeteksessa. Suomen lääkärilehti 2011;49:3745-50.
Singal DP, Blajchman MA. Histocompatibility (HL-A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus. Diabetes 1973;22:429-32.
Skyler JS and the Type 1 Diabetes TrialNet Study Group. Update on worldwide efforts to prevent type 1 diabetes. Ann N Y Acad Sci 2008;1150:190-6.
Skyler JS. Primary and secondary prevention of Type 1 diabetes. Diabet Med 2013;30:161-9.
Smyth DJ, Cooper JD, Bailey R ym. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 2006;38:617-9.
Tattersall R. Maturity-onset diabetes of the young: a clinical history. Diabet Med 1998;15: 11–14.
Tattersall RB, Fajans SS. A difference between the inheritance of classical juvenile-onset and maturity-onset type diabetes of young people. Diabetes 1975;24:44-53.
Thomsen M, Platz P, Andersen OO ym. MLCtyping in juvenile diabetes mellitus and idiopathic Addison’s disease. Transplant Rev 1975; 22:125-47
Thomson G. HLA disease associations: models for insulin dependent diabetes mellitus and the study of complex human genetic disorders. Annu Rev Genet 1988;22:31-50.
Vaarala O, Knip M, Paronen J ym. Cow’s milk formula feeding induces primary immunization to insulin in infants at genetic risk for type 1 diabetes. Diabetes 1999;48:1389-94.
Vella A, Cooper JD, Lowe CE ym. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polumorphisms. Am J Hum Genet 2005;76:773-779.
Verge CF, Gianani R, Yu L ym. Late progression to diabetes and evidence for chronic beta-cell autoimmunity in identical twins of patients with type 1 diabetes. Diabetes 1995;44:1176-9.
von Herrath M. Can we learn from viruses how to prevent type one diabetes?: the role of viral infections in the pathogenesis of type 1 diabetes and the development of novel combination therapies.
Diabetes 2009;58:2-11.
Warram, JH, Krolewski AS, Kahn CR. Determinants of IDDM and perinatal mortality in children of diabetic mothers. Diabetes 1988;37:1328-34.
Warram JH, Krolewski AS, Gottlieb MS, Kahn CR. Differences in risk of insulin-dependent diabetes in offspring of diabetic mothers and diabetic fathers. N Engl J Med 1984;311: 149–152.
Watkins R, Evans-Molina C, Blum J, Dimeglio L. Established and emerging biomarkers for the prediction of type 1 diabetes: a systematic review. Transl Res 2014: pii: S1931-5244(14)00078-4.
Wenzlau JM, Juhl K, Yu L ym. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 2007;104:17040-5.
Wenzlau JM, Liu Y, Yu L ym. A common nonsynonymous single nucleotide poly-morphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes 2008;57:2693-7.
Wenzlau JM, Frisch LM, Gardner TJ, Sarkar S, Hutton JC, Davidson HW. Novel antigens in type 1 diabetes: The importance of ZnT8. Curr Diab Rep 2009;9:105-12.
Williams AJ, Aitken RJ, Chandler MA, Gillespie KM, Lampasona V, Bingley PJ. Autoantibodies to islet antigen-2 are associated with HLA-DRB1*07 and DRB1*09 haplo-types as well as DRB1*04 at onset of type 1 diabetes: the possible role of HLA-DQA in auto-immunity to IA-2. Diabetologia 2008;51:1444-8.
Winter W. Diabetes autoimmunity. In: Lifshitz, F, esitor. Pediatric Endocrinology. Vol. 1. 5th Edition.
New York, NY: Informa Healthcare UA, Inc; 2007:83-99.
Woodworth J, Howey D, Bowsher R, Lutz S, Sanat P, Brady P. Lys(B28), Pro(B29) human insulin (K): dose ranging vs. humulin R (H). Diabetologia 1993: 42 (Suppl. 1): 54A.
Zeitler P, Fu J, Tandon N, Nadeau K, Urakami T, Bartlett T, et al. Type 2 diabetes in the child and adolescent. Pediatric Diabetes 2014.